[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v5y2001i3p31-47.html
   My bibliography  Save this article

Dynamic Fund Protection

Author

Listed:
  • Junichi Imai
  • Phelim Boyle
Abstract
Dynamic fund protection provides an investor with a floor level of protection during the investment period. This feature generalizes the concept of a put option, which provides only a floor value at a particular time. The dynamic protection feature ensures that the fund value is upgraded if it ever falls below a certain threshold level. Gerber and Pafumi (2000) have recently derived a closed-form expression for the price of this protection when the basic portfolio follows geometric Brownian motion. In this paper we examine the pricing of this feature under the constant elasticity of variance process. Two approaches are used to obtain numerical results. First, we show how to extend the basic Monte Carlo approach to handle the particular features of dynamic protection. When a discrete-time simulation approach is used to value a derivative that is subject to continuous monitoring, there is a bias. We show how to remove this bias. Second, a partial differential equation approach is used to price dynamic protection. We demonstrate that the price of the dynamic protection is sensitive to the investment assumptions. We also discuss a discrete time modification of the dynamic protection feature that is suitable for practical implementation. The paper deals just with pricing and does not consider the important question of reserving for these contracts.

Suggested Citation

  • Junichi Imai & Phelim Boyle, 2001. "Dynamic Fund Protection," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(3), pages 31-47.
  • Handle: RePEc:taf:uaajxx:v:5:y:2001:i:3:p:31-47
    DOI: 10.1080/10920277.2001.10595996
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2001.10595996
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2001.10595996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hertrich Markus, 2016. "The Costs of Implementing a Unilateral One-Sided Exchange Rate Target Zone," Review of Economics, De Gruyter, vol. 67(1), pages 91-120, May.
    2. Ko, Bangwon & Shiu, Elias S.W. & Wei, Li, 2010. "Pricing maturity guarantee with dynamic withdrawal benefit," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 216-223, October.
    3. Linyi Qian & Zhuo Jin & Wei Wang & Lyu Chen, 2018. "Pricing dynamic fund protections for a hyperexponential jump diffusion process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(1), pages 210-221, January.
    4. Chu, Chi Chiu & Kwok, Yue Kuen, 2004. "Reset and withdrawal rights in dynamic fund protection," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 273-295, April.
    5. El Karoui, Nicole & Jeanblanc, Monique & Lacoste, Vincent, 2005. "Optimal portfolio management with American capital guarantee," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 449-468, March.
    6. Jun Sekine, 2012. "Long-term optimal portfolios with floor," Finance and Stochastics, Springer, vol. 16(3), pages 369-401, July.
    7. Han, Heejae & Jeon, Junkee & Kang, Myungjoo, 2016. "Pricing chained dynamic fund protection," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 267-278.
    8. Moore, Kristen S., 2009. "Optimal surrender strategies for equity-indexed annuity investors," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:5:y:2001:i:3:p:31-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.