[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v2y2002i6p487-495.html
   My bibliography  Save this article

Stochastic volatility options pricing with wavelets and artificial neural networks

Author

Listed:
  • Christopher Zapart
Abstract
The paper describes an alternative options pricing method which uses a binomial tree linked to an innovative stochastic volatility model. The volatility model is based on wavelets and artificial neural networks. Wavelets provide a convenient signal/noise decomposition of the volatility in the nonlinear feature space. Neural networks are used to infer future volatility from the wavelets feature space in an iterative manner. The bootstrap method provides the 95% confidence intervals for the options prices. Market options prices as quoted on the Chicago Board Options Exchange are used for performance comparison between the Black-Scholes model and a new options pricing scheme. The proposed dynamic volatility model produces as good as and often better options prices than the conventional Black-Scholes formulae.

Suggested Citation

  • Christopher Zapart, 2002. "Stochastic volatility options pricing with wavelets and artificial neural networks," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 487-495.
  • Handle: RePEc:taf:quantf:v:2:y:2002:i:6:p:487-495
    DOI: 10.1080/14697688.2002.0000016
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697688.2002.0000016
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2002.0000016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    2. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    3. Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
    4. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    5. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:2:y:2002:i:6:p:487-495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.