[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v17y2017i4p571-595.html
   My bibliography  Save this article

An estimation procedure for the Hawkes process

Author

Listed:
  • Matthias Kirchner
Abstract
In this paper, we present a nonparametric estimation procedure for the multivariate Hawkes point process. The timeline is cut into bins and—for each component process—the number of points in each bin is counted. As a consequence of earlier results in Kirchner [Stoch. Process. Appl., 2016, 162, 2494–2525], the distribution of the resulting ‘bin-count sequences’ can be approximated by an integer-valued autoregressive model known as the (multivariate) INAR(p) model. We represent the INAR(p) model as a standard vector-valued linear autoregressive time series with white-noise innovations (VAR(p)). We establish consistency and asymptotic normality for conditional least-squares estimation of the VAR(p), respectively, the INAR(p) model. After appropriate scaling, these time-series estimates yield estimates for the underlying multivariate Hawkes process as well as corresponding variance estimates. The estimates depend on a bin-size Δ$ \Delta $ and a support s. We discuss the impact and the choice of these parameters. All results are presented in such a way that computer implementation, e.g. in R, is straightforward. Simulation studies confirm the effectiveness of our estimation procedure. In the second part of the paper, we present a data example where the method is applied to bivariate event-streams in financial limit-order-book data. We fit a bivariate Hawkes model on the joint process of limit and market order arrivals. The analysis exhibits a remarkably asymmetric relation between the two component processes: incoming market orders excite the limit-order flow heavily whereas the market-order flow is hardly affected by incoming limit orders. For the estimated excitement functions, we observe power-law shapes, inhibitory effects for lags under 0.003 s, second periodicities and local maxima at 0.01, 0.1 and 0.5 s.

Suggested Citation

  • Matthias Kirchner, 2017. "An estimation procedure for the Hawkes process," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 571-595, April.
  • Handle: RePEc:taf:quantf:v:17:y:2017:i:4:p:571-595
    DOI: 10.1080/14697688.2016.1211312
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1211312
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1211312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aurélien Alfonsi & Pierre Blanc, 2015. "Extension and calibration of a Hawkes-based optimal execution model," Working Papers hal-01169686, HAL.
    2. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    3. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    4. Emmanuel Bacry & Jean-Francois Muzy, 2014. "Second order statistics characterization of Hawkes processes and non-parametric estimation," Papers 1401.0903, arXiv.org, revised Feb 2015.
    5. Aur'elien Alfonsi & Pierre Blanc, 2015. "Extension and calibration of a Hawkes-based optimal execution model," Papers 1506.08740, arXiv.org.
    6. Clive Bowsher, 2002. "Modelling Security Market Events in Continuous Time: Intensity based, Multivariate Point Process Models," Economics Series Working Papers 2002-W22, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    2. Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2023. "Limit Order Book Dynamics and Order Size Modelling Using Compound Hawkes Process," Papers 2312.08927, arXiv.org, revised Aug 2024.
    3. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.
    4. Konark Jain & Jean-Franc{c}ois Muzy & Jonathan Kochems & Emmanuel Bacry, 2024. "No Tick-Size Too Small: A General Method for Modelling Small Tick Limit Order Books," Papers 2410.08744, arXiv.org, revised Nov 2024.
    5. Chenlong Li & Kaiyan Cui, 2024. "Multivariate Hawkes processes with spatial covariates for spatiotemporal event data analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(4), pages 535-578, August.
    6. Benjamin Favetto, 2019. "The European intraday electricity market : a modeling based on the Hawkes process," Working Papers hal-02089289, HAL.
    7. Cao, Jingyi & Landriault, David & Li, Bin, 2020. "Optimal reinsurance-investment strategy for a dynamic contagion claim model," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 206-215.
    8. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    9. Masato Hisakado & Kodai Hattori & Shintaro Mori, 2022. "Multi-dimensional Self-Exciting NBD Process and Default Portfolios," The Review of Socionetwork Strategies, Springer, vol. 16(2), pages 493-512, October.
    10. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    11. Philip Protter & Qianfan Wu & Shihao Yang, 2021. "Order Book Queue Hawkes-Markovian Modeling," Papers 2107.09629, arXiv.org, revised Jan 2022.
    12. Luca Mucciante & Alessio Sancetta, 2023. "Estimation of an Order Book Dependent Hawkes Process for Large Datasets," Papers 2307.09077, arXiv.org.
    13. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2017. "Hybrid marked point processes: characterisation, existence and uniqueness," Papers 1707.06970, arXiv.org, revised Oct 2018.
    14. Weiyi Liu & Song‐Ping Zhu, 2019. "Pricing variance swaps under the Hawkes jump‐diffusion process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 635-655, June.
    15. Timoth'ee Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Papers 2401.09361, arXiv.org, revised Nov 2024.
    16. Charlotte Dion & Sarah Lemler, 2020. "Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 489-515, October.
    17. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    18. Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2024. "Limit Order Book Simulations: A Review," Papers 2402.17359, arXiv.org, revised Mar 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    2. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    3. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Exploiting Spillovers to Forecast Crashes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 936-955, December.
    4. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    5. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    7. Filimonov, Vladimir & Bicchetti, David & Maystre, Nicolas & Sornette, Didier, 2014. "Quantification of the high level of endogeneity and of structural regime shifts in commodity markets," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 174-192.
    8. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    9. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Specification Testing in Hawkes Models," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 139-171.
    10. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2016. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Papers 1602.07663, arXiv.org.
    11. Asger Lunde & Allan Timmermann, 2005. "Completion time structures of stock price movements," Annals of Finance, Springer, vol. 1(3), pages 293-326, August.
    12. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    13. Clive Bowsher, 2004. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Model," Economics Series Working Papers 2003-W03, University of Oxford, Department of Economics.
    14. repec:wyi:journl:002211 is not listed on IDEAS
    15. Bonnet, Anna & Martinez Herrera, Miguel & Sangnier, Maxime, 2021. "Maximum likelihood estimation for Hawkes processes with self-excitation or inhibition," Statistics & Probability Letters, Elsevier, vol. 179(C).
    16. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    17. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    18. Dassios, Angelos & Zhao, Hongbiao, 2013. "Exact simulation of Hawkes process with exponentially decaying intensity," LSE Research Online Documents on Economics 51370, London School of Economics and Political Science, LSE Library.
    19. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    20. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    21. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    22. Boswijk, H. Peter & Laeven, Roger J.A. & Yang, Xiye, 2018. "Testing for self-excitation in jumps," Journal of Econometrics, Elsevier, vol. 203(2), pages 256-266.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:17:y:2017:i:4:p:571-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.