[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/jocebs/v21y2023i3p429-463.html
   My bibliography  Save this article

Predicting Chinese consumption series with Baidu

Author

Listed:
  • Zhongchen Song
  • Tom Coupé
Abstract
There is a substantial literature that suggests that search behavior data from Google Trends can be used for both private and public sector decision-making. In this paper, we use search behavior data from Baidu, the internet search engine most popular in China, to analyze whether these can improve nowcasts and forecasts of the Chinese economy. Using a wide variety of estimation and variable selection procedures, we find that Baidu’s search data can improve nowcast and forecast performance of the sales of automobiles and mobile phones reducing forecast errors by more than 10%, as well as reducing forecast errors of total retail sales of consumptions goods in China by more than 40%. Google Trends data, in contrast, do not improve performance.

Suggested Citation

  • Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
  • Handle: RePEc:taf:jocebs:v:21:y:2023:i:3:p:429-463
    DOI: 10.1080/14765284.2022.2161175
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14765284.2022.2161175
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14765284.2022.2161175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephane Dees & Pedro Soares Brinca, 2013. "Consumer confidence as a predictor of consumption spending: Evidence for the United States and the Euro area," International Economics, CEPII research center, issue 134, pages 1-14.
    2. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    3. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    4. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    5. Carroll, Christopher D & Fuhrer, Jeffrey C & Wilcox, David W, 1994. "Does Consumer Sentiment Forecast Household Spending? If So, Why?," American Economic Review, American Economic Association, vol. 84(5), pages 1397-1408, December.
    6. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    7. Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2016. "Forecasting Consumption: the Role of Consumer Confidence in Real Time with many Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1254-1275, November.
    8. John A. Cotsomitis & Andy C. C. Kwan, 2006. "Can Consumer Confidence Forecast Household Spending? Evidence from the European Commission Business and Consumer Surveys," Southern Economic Journal, John Wiley & Sons, vol. 72(3), pages 597-610, January.
    9. repec:cii:cepiei:2013-q2-134-1 is not listed on IDEAS
    10. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    11. Dehua Shen & Yongjie Zhang & Xiong Xiong & Wei Zhang, 2017. "Baidu index and predictability of Chinese stock returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-8, December.
    12. Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
    13. Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
    14. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    15. Huang, Xiankai & Zhang, Lifeng & Ding, Yusi, 2017. "The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City," Tourism Management, Elsevier, vol. 58(C), pages 301-306.
    16. Jaemin Woo & Ann L. Owen, 2019. "Forecasting private consumption with Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(2), pages 81-91, March.
    17. E. Philip Howrey, 2001. "The Predictive Power of the Index of Consumer Sentiment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 175-216.
    18. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    19. Juhro, Solikin M. & Iyke, Bernard Njindan, 2020. "Consumer confidence and consumption expenditure in Indonesia," Economic Modelling, Elsevier, vol. 89(C), pages 367-377.
    20. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    21. Robert Gausden & Mohammad S. Hasan, 2018. "An assessment of the contribution of consumer confidence towards household spending decisions using UK data," Applied Economics, Taylor & Francis Journals, vol. 50(12), pages 1395-1411, March.
    22. Liwen Vaughan & Yue Chen, 2015. "Data mining from web search queries: A comparison of google trends and baidu index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(1), pages 13-22, January.
    23. Fang, Jianchun & Gozgor, Giray & Lau, Chi-Keung Marco & Lu, Zhou, 2020. "The impact of Baidu Index sentiment on the volatility of China's stock markets," Finance Research Letters, Elsevier, vol. 32(C).
    24. Chris Hand & Guy Judge, 2012. "Searching for the picture: forecasting UK cinema admissions using Google Trends data," Applied Economics Letters, Taylor & Francis Journals, vol. 19(11), pages 1051-1055, July.
    25. Naccarato, Alessia & Falorsi, Stefano & Loriga, Silvia & Pierini, Andrea, 2018. "Combining official and Google Trends data to forecast the Italian youth unemployment rate," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 114-122.
    26. Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
    27. John A. Cotsomitis & Andy C. C. Kwan, 2006. "Can Consumer Confidence Forecast Household Spending? Evidence from the European COmmission Business and Consumer Surveys," Southern Economic Journal, John Wiley & Sons, vol. 72(3), pages 597-610, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).
    2. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    3. Aneta M. Klopocka & Rumiana Gorska, 2021. "Forecasting Household Saving Rate with Consumer Confidence Indicator and its Components: Panel Data Analysis of 14 European Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 874-898.
    4. Zhang, Chuan & Tian, Yu-Xin & Fan, Zhi-Ping, 2022. "Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1005-1024.
    5. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    6. Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
    7. Rodrigo Mulero & Alfredo García-Hiernaux, 2021. "Forecasting Spanish unemployment with Google Trends and dimension reduction techniques," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(3), pages 329-349, September.
    8. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    9. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
    10. Niesert, Robin F. & Oorschot, Jochem A. & Veldhuisen, Christian P. & Brons, Kester & Lange, Rutger-Jan, 2020. "Can Google search data help predict macroeconomic series?," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1163-1172.
    11. Benedikt Maas, 2020. "Short‐term forecasting of the US unemployment rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
    12. Andreea Avramescu & Arkadiusz Wiśniowski, 2021. "Now-casting Romanian migration into the United Kingdom by using Google Search engine data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(40), pages 1219-1254.
    13. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
    14. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    15. Anastasiou, Dimitrios & Bragoudakis, Zacharias & Giannoulakis, Stelios, 2021. "Perceived vs actual financial crisis and bank credit standards: Is there any indication of self-fulfilling prophecy?," Research in International Business and Finance, Elsevier, vol. 58(C).
    16. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
    17. Chuan Zhang & Yu-Xin Tian & Ling-Wei Fan, 2020. "Improving the Bass model’s predictive power through online reviews, search traffic and macroeconomic data," Annals of Operations Research, Springer, vol. 295(2), pages 881-922, December.
    18. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
    19. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    20. Aneta Maria Kłopocka, 2017. "Does Consumer Confidence Forecast Household Saving and Borrowing Behavior? Evidence for Poland," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(2), pages 693-717, September.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jocebs:v:21:y:2023:i:3:p:429-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.