[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p773-783.html
   My bibliography  Save this article

An Improved Transformation-Based Kernel Estimator of Densities on the Unit Interval

Author

Listed:
  • Kuangyu Wen
  • Ximing Wu
Abstract
The kernel density estimator (KDE) suffers boundary biases when applied to densities on bounded supports, which are assumed to be the unit interval. Transformations mapping the unit interval to the real line can be used to remove boundary biases. However, this approach may induce erratic tail behaviors when the estimated density of transformed data is transformed back to its original scale. We propose a modified, transformation-based KDE that employs a tapered and tilted back-transformation. We derive the theoretical properties of the new estimator and show that it asymptotically dominates the naive transformation based estimator while maintains its simplicity. We then propose three automatic methods of smoothing parameter selection. Our Monte Carlo simulations demonstrate the good finite sample performance of the proposed estimator, especially for densities with poles near the boundaries. An example with real data is provided.

Suggested Citation

  • Kuangyu Wen & Ximing Wu, 2015. "An Improved Transformation-Based Kernel Estimator of Densities on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 773-783, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:773-783
    DOI: 10.1080/01621459.2014.969426
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.969426
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.969426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.
    2. Kairat Mynbaev & Carlos Martins-Filho, 2019. "Unified estimation of densities on bounded and unbounded domains," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 853-887, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:773-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.