[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v37y2018i7p744-759.html
   My bibliography  Save this article

Maximum simulated likelihood estimation of the panel sample selection model

Author

Listed:
  • Hung-Pin Lai
  • Wen-Jen Tsay
Abstract
Heckman's (1976, 1979) sample selection model has been employed in many studies of linear and nonlinear regression applications. It is well known that ignoring the sample selectivity may result in inconsistency of the estimator due to the correlation between the statistical errors in the selection and main equations. In this article, we reconsider the maximum likelihood estimator for the panel sample selection model in Keane et al. (1988). Since the panel data model contains individual effects, such as fixed or random effects, the likelihood function is more complicated than that of the classical Heckman model. As an alternative to the existing derivation of the likelihood function in the literature, we show that the conditional distribution of the main equation follows a closed skew-normal (CSN) distribution, of which the linear transformation is still a CSN. Although the evaluation of the likelihood function involves high-dimensional integration, we show that the integration can be further simplified into a one-dimensional problem and can be evaluated by the simulated likelihood method. Moreover, we also conduct a Monte Carlo experiment to investigate the finite sample performance of the proposed estimator and find that our estimator provides reliable and quite satisfactory results.

Suggested Citation

  • Hung-Pin Lai & Wen-Jen Tsay, 2018. "Maximum simulated likelihood estimation of the panel sample selection model," Econometric Reviews, Taylor & Francis Journals, vol. 37(7), pages 744-759, August.
  • Handle: RePEc:taf:emetrv:v:37:y:2018:i:7:p:744-759
    DOI: 10.1080/07474938.2016.1152657
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2016.1152657
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2016.1152657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergi Jiménez-Martín & José M. Labeaga & Majid al Sadoon, 2020. "Consistent estimation of panel data sample selection models," Working Papers 2020-06, FEDEA.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:37:y:2018:i:7:p:744-759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.