[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v17y1998i3p275-288.html
   My bibliography  Save this article

Bootstrap-based evaluation of markov-switching time series models

Author

Listed:
  • Zacharias Psaradakis
Abstract
This paper explores the possibility of evaluating the adequacy of Markov-switching time series models by comparing selected functionals (such as the spectral density function and moving empirical moments) obtained from the data with those of the fitted model using a bootstrap algorithm. The proposed model checking procedure is easy to implement and flexible enough to be adapted to a wide variety of models with parameters subject to Markov regime-switching. Examples with real and artificial data illustrate the potential of the methodology.

Suggested Citation

  • Zacharias Psaradakis, 1998. "Bootstrap-based evaluation of markov-switching time series models," Econometric Reviews, Taylor & Francis Journals, vol. 17(3), pages 275-288.
  • Handle: RePEc:taf:emetrv:v:17:y:1998:i:3:p:275-288
    DOI: 10.1080/07474939808800416
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474939808800416
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474939808800416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Stephen & Psaradakis, Zacharias & Sola, Martin, 1997. "Switching error-correction models of house prices in the United Kingdom," Economic Modelling, Elsevier, vol. 14(4), pages 517-527, October.
    2. Garcia, Rene & Perron, Pierre, 1996. "An Analysis of the Real Interest Rate under Regime Shifts," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 111-125, February.
    3. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    6. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    7. Ruey S. Tsay, 1992. "Model Checking Via Parametric Bootstraps in Time Series Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton Velinov, 2014. "Assessing the Sustainability of Government Debt: On the Different States of the Debt/GDP Process," Discussion Papers of DIW Berlin 1359, DIW Berlin, German Institute for Economic Research.
    2. Felipe Morandé & Mauricio Tejada, 2009. "Sources of Uncertainty in Conducting Monetary Policy in Chile," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 12, pages 451-509, Central Bank of Chile.
    3. Psaradakis Zacharias & Spagnolo Nicola, 2002. "Power Properties of Nonlinearity Tests for Time Series with Markov Regimes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-16, November.
    4. Zacharias Psaradakis & Nicola Spagnolo, 2003. "On The Determination Of The Number Of Regimes In Markov‐Switching Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 237-252, March.
    5. Felipe Morandé & Mauricio Tejada, 2008. "Sources of Uncertainty for Conducting Monetary Policy in Chile," Working Papers Central Bank of Chile 492, Central Bank of Chile.
    6. Salomon Marcelo F., 2001. "The Inflationary Consequences of Fiscal Policy In Brazil: An Empirical Investigation with Regime Switches and Time-Varying Probabilities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-17, April.
    7. Marian Vavra, 2016. "Testing the Validity of Assumptions of UC-ARIMA Models for Trend-Cycle Decompositions," Working and Discussion Papers WP 4/2016, Research Department, National Bank of Slovakia.
    8. Silvestro Di Sanzo, 2009. "Testing for linearity in Markov switching models: a bootstrap approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(2), pages 153-168, July.
    9. Białkowski, Jędrzej & Bohl, Martin T. & Stephan, Patrick M. & Wisniewski, Tomasz P., 2015. "The gold price in times of crisis," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 329-339.
    10. Felipe Morandé L. & Mauricio Tejada G., 2008. "Sources of Uncertainty in Monetary Policy Conduct in Chile," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 11(3), pages 45-80, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psaradakis, Zacharias & Sola, Martin, 1998. "Finite-sample properties of the maximum likelihood estimator in autoregressive models with Markov switching," Journal of Econometrics, Elsevier, vol. 86(2), pages 369-386, June.
    2. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    3. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.
    4. Chang, Yoosoon & Choi, Yongok & Park, Joon Y., 2017. "A new approach to model regime switching," Journal of Econometrics, Elsevier, vol. 196(1), pages 127-143.
    5. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    6. Hamilton, J.D., 2016. "Macroeconomic Regimes and Regime Shifts," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201, Elsevier.
    7. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    8. Kim, Chang-Jin & Kim, Jaeho, 2013. "Bayesian Inference in Regime-Switching ARMA Models with Absorbing States: The Dynamics of the Ex-Ante Real Interest Rate Under Structural Breaks," MPRA Paper 51117, University Library of Munich, Germany.
    9. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
    10. Liu, Wen-Hsien & Chyi, Yih-Luan, 2006. "A Markov regime-switching model for the semiconductor industry cycles," Economic Modelling, Elsevier, vol. 23(4), pages 569-578, July.
    11. T. -W. Ho, 2003. "Regime-switching properties of the optimal seigniorage hypothesis: the case of Taiwan," Applied Economics, Taylor & Francis Journals, vol. 35(4), pages 485-494.
    12. Ihle, Rico & von Cramon-Taubadel, Stephan, 2008. "A Comparison of Threshold Cointegration and Markov-Switching Vector Error Correction Models in Price Transmission Analysis," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37603, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    13. Stéphane Lhuissier, 2019. "Bayesian Inference for Markov-switching Skewed Autoregressive Models," Working papers 726, Banque de France.
    14. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    15. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    16. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    17. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    18. Lhuissier, Stéphane, 2022. "Financial conditions and macroeconomic downside risks in the euro area," European Economic Review, Elsevier, vol. 143(C).
    19. Psaradakis Zacharias & Spagnolo Nicola, 2002. "Power Properties of Nonlinearity Tests for Time Series with Markov Regimes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-16, November.
    20. Chien-Chung Nieh & Jeng-Bau Lin & Yu-Shan Wang, 2008. "Regime-switching analysis for the impacts of exchange rate volatility on corporate values: a Taiwanese case," Applied Economics, Taylor & Francis Journals, vol. 40(4), pages 491-504.

    More about this item

    Keywords

    Markov Chain; Moving Estimates; Parametric Bootstrap; Regime Switching; Spectral Density Function; JEL Classification: C15: C22: C52;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:17:y:1998:i:3:p:275-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.