[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i7p815-825.html
   My bibliography  Save this article

Smoothing spline estimation of generalised varying-coefficient mixed model

Author

Listed:
  • Yiqiang Lu
  • Riquan Zhang
Abstract
The generalised varying-coefficient model with longitudinal data faces a challenge that the data are correlated, as multiple observations are measured from each individual. In this article we consider the generalised varying-coefficient mixed model (GVCMM) which uses a varying-coefficient model to fit mean functions, while accounting for overdispersion and correlation by adding random effects. Smoothing splines are used to estimate the smooth but arbitrary nonparametric coefficient functions. The usually intractable integration involved in evaluating the quasi-likelihood function is approximated by the Laplace method. This suggests that the GVCMM can be approximately represented by a generalised linear mixed model. Hence, the smoothing parameters and the variance components can be estimated by using the restricted maximum log-likelihood (REML) approach, where the smoothing parameters are treated as an extra variance component vector. We illustrate the performance of the proposed method through some simulation and an application to a real data set.

Suggested Citation

  • Yiqiang Lu & Riquan Zhang, 2009. "Smoothing spline estimation of generalised varying-coefficient mixed model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 815-825.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:7:p:815-825
    DOI: 10.1080/10485250903151078
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250903151078
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250903151078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    2. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    3. Chiang C-T. & Rice J. A & Wu C. O, 2001. "Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 605-619, June.
    4. Jeffrey S. Morris & Raymond J. Carroll, 2006. "Wavelet‐based functional mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 179-199, April.
    5. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    6. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Seonghyun & Park, Minjae & Park, Taeyoung, 2017. "Analysis of binary longitudinal data with time-varying effects," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 145-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qihua & Zhang, Riquan, 2009. "Statistical estimation in varying coefficient models with surrogate data and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2389-2405, November.
    2. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    3. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    4. Zhang, Xiaoke & Zhong, Qixian & Wang, Jane-Ling, 2020. "A new approach to varying-coefficient additive models with longitudinal covariates," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    5. Tang Qingguo & Cheng Longsheng, 2008. "M-estimation and B-spline approximation for varying coefficient models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 611-625.
    6. Wang-Li Xu & Li-Xing Zhu, 2008. "Goodness-of-fit testing for varying-coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 129-146, September.
    7. Zhang, Riquan & Li, Guoying, 2007. "Averaged estimation of functional-coefficient regression models with different smoothing variables," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 455-461, February.
    8. Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
    9. Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
    10. Li, XiaoLi & You, JinHong, 2012. "Error covariance matrix correction based approach to functional coefficient regression models with generated covariates," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 263-281.
    11. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    12. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    13. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    14. Wang-Li Xu & Li-Xing Zhu, 2009. "A goodness-of-fit test for a varying-coefficients model in longitudinal studies," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(4), pages 427-440.
    15. Wong, Heung & Zhang, Riquan & Ip, Wai-cheung & Li, Guoying, 2008. "Functional-coefficient partially linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 278-305, February.
    16. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    17. Wang, Qihua & Xue, Liugen, 2011. "Statistical inference in partially-varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 1-19, January.
    18. Hao, Siteng & Lin, Shu-Chin & Wang, Jane-Ling & Zhong, Qixian, 2024. "Dynamic modeling for multivariate functional and longitudinal data," Journal of Econometrics, Elsevier, vol. 239(2).
    19. Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
    20. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:7:p:815-825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.