[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/cfrwps/1407.html
   My bibliography  Save this paper

Risk-adjusted option-implied moments

Author

Listed:
  • Brinkmann, Felix
  • Korn, Olaf
Abstract
Option-implied moments, like implied volatility, contain useful information about an underlying asset's return distribution, but are derived under the risk-neutral probability measure. This paper shows how to convert risk-neutral moments into the corresponding physical ones. The main theoretical result expresses moments under the physical probability measure in terms of observed option prices and the preferences of a representative investor. Based on this result, we investigate several empirical questions. We show that a model of a representative investor with CRRA utility can explain the variance risk premium for the S&P500 index but fails to capture variance and skewness risk premiums simultaneously. Moreover, we present methods to estimate forward-looking market risk premiums and investors' disappointment aversion implied in market prices.

Suggested Citation

  • Brinkmann, Felix & Korn, Olaf, 2014. "Risk-adjusted option-implied moments," CFR Working Papers 14-07, University of Cologne, Centre for Financial Research (CFR).
  • Handle: RePEc:zbw:cfrwps:1407
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/100676/1/795551274.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    3. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    4. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    5. Adrian Buss & Grigory Vilkov, 2012. "Measuring Equity Risk with Option-implied Correlations," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3113-3140.
    6. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    7. Baule, Rainer & Korn, Olaf & Saßning, Sven, 2013. "Which beta is best? On the information content of option-implied betas," CFR Working Papers 13-11, University of Cologne, Centre for Financial Research (CFR).
    8. Bo-Young Chang & Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2011. "Option-Implied Measures of Equity Risk," Review of Finance, European Finance Association, vol. 16(2), pages 385-428.
    9. Joost Driessen & Pascal Maenhout, 2007. "An Empirical Portfolio Perspective on Option Pricing Anomalies," Review of Finance, European Finance Association, vol. 11(4), pages 561-603.
    10. Patrick L. Brockett & Linda L. Golden, 1987. "A Class of Utility Functions Containing all the Common Utility Functions," Management Science, INFORMS, vol. 33(8), pages 955-964, August.
    11. Roman Kozhan & Anthony Neuberger & Paul Schneider, 2013. "The Skew Risk Premium in the Equity Index Market," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2174-2203.
    12. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    13. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    14. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    15. Joshua D. Coval & Tyler Shumway, 2001. "Expected Option Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 983-1009, June.
    16. Anthony Neuberger, 2012. "Realized Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 25(11), pages 3423-3455.
    17. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2014. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10 [rev.], University of Cologne, Centre for Financial Research (CFR).
    18. Ang, Andrew & Bekaert, Geert & Liu, Jun, 2005. "Why stocks may disappoint," Journal of Financial Economics, Elsevier, vol. 76(3), pages 471-508, June.
    19. Gul, Faruk, 1991. "A Theory of Disappointment Aversion," Econometrica, Econometric Society, vol. 59(3), pages 667-686, May.
    20. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    21. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    22. Jaroslav Borovička & Lars Peter Hansen & José A. Scheinkman, 2016. "Misspecified Recovery," Journal of Finance, American Finance Association, vol. 71(6), pages 2493-2544, December.
    23. Bakshi, Gurdip & Madan, Dilip, 2000. "Spanning and derivative-security valuation," Journal of Financial Economics, Elsevier, vol. 55(2), pages 205-238, February.
    24. Jin-Chuan Duan & Weiqi Zhang, 2014. "Forward-Looking Market Risk Premium," Management Science, INFORMS, vol. 60(2), pages 521-538, February.
    25. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    26. Schneider, Paul, 2015. "Generalized risk premia," Journal of Financial Economics, Elsevier, vol. 116(3), pages 487-504.
    27. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    28. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    29. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    30. P. Carr & D. Madan, 2001. "Optimal positioning in derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 19-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Brinkmann & Olaf Korn, 2018. "Risk-adjusted option-implied moments," Review of Derivatives Research, Springer, vol. 21(2), pages 149-173, July.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2014. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10 [rev.], University of Cologne, Centre for Financial Research (CFR).
    4. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    5. Alexander Kempf & Olaf Korn & Sven Saßning, 2015. "Portfolio Optimization Using Forward-Looking Information," Review of Finance, European Finance Association, vol. 19(1), pages 467-490.
    6. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2011. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10, University of Cologne, Centre for Financial Research (CFR).
    7. Baule, Rainer & Korn, Olaf & Saßning, Sven, 2013. "Which beta is best? On the information content of option-implied betas," CFR Working Papers 13-11, University of Cologne, Centre for Financial Research (CFR).
    8. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    9. Driessen, Joost & Maenhout, Pascal, 2013. "The world price of jump and volatility risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 518-536.
    10. Renato Faccini & Eirini Konstantinidi & George Skiadopoulos & Sylvia Sarantopoulou-Chiourea, 2019. "A New Predictor of U.S. Real Economic Activity: The S&P 500 Option Implied Risk Aversion," Management Science, INFORMS, vol. 65(10), pages 4927-4949, October.
    11. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    12. Xiang Gao & Kees Koedijk & Thomas Walther & Zhan Wang, 2022. "Relative Investor Sentiment Measurement," Working Papers 2205, Utrecht School of Economics.
    13. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    14. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    15. Brinkmann, Felix & Kempf, Alexander & Korn, Olaf, 2013. "Forward-looking measures of higher-order dependencies with an application to portfolio selection," CFR Working Papers 13-08, University of Cologne, Centre for Financial Research (CFR).
    16. Rainer Baule & Olaf Korn & Sven Saßning, 2016. "Which Beta Is Best? On the Information Content of Option†implied Betas," European Financial Management, European Financial Management Association, vol. 22(3), pages 450-483, June.
    17. Liu, Zhangxin (Frank) & Faff, Robert, 2017. "Hitting SKEW for SIX," Economic Modelling, Elsevier, vol. 64(C), pages 449-464.
    18. Brinkmann, Felix & Kempf, Alexander & Korn, Olaf, 2014. "Forward-looking measures of higher-order dependencies with an application to portfolio selection," CFR Working Papers 13-08 [rev.], University of Cologne, Centre for Financial Research (CFR).
    19. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    20. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.

    More about this item

    Keywords

    option-implied moments; risk adjustment; variance risk premium; market risk premium; disappointment aversion;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfrwps:1407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/cfkoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.