[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/cawmdp/60.html
   My bibliography  Save this paper

The StoNED age: The departure into a new era of efficiency analysis? An MC study comparing StoNED and the "oldies" (SFA and DEA)

Author

Listed:
  • Andor, Mark
  • Hesse, Frederik
Abstract
Based on the seminal paper of Farrell (1957), researchers have developed several methods for measuring efficiency. Nowadays, the most prominent representatives are nonparametric data envelopment analysis (DEA) and parametric stochastic frontier analysis (SFA), both introduced in the late 1970s. Since decades, researchers have been attempting to develop a method which combines the virtues - both nonparametric and stochastic - of these oldies. The recently introduced Stochastic non-smooth envelopment of data (StoNED) by Kuosmanen and Kortelainen (2010) is a promising method. This paper compares the StoNED method with the two oldies DEA and SFA and extends the initial Monte Carlo simulation of Kuosmanen and Kortelainen (2010) in two directions. Firstly, we consider a wider range of conditions. Secondly, we also consider the maximum likelihood estimator (ML) and the pseudolikelihood estimator (PL) for SFA and StoNED, respectively. We show that, in scenarios without noise, the rivalry is still between the oldies, while in noisy scenarios, the nonparametric StoNED PL now constitutes a promising alternative to the SFA ML.

Suggested Citation

  • Andor, Mark & Hesse, Frederik, 2012. "The StoNED age: The departure into a new era of efficiency analysis? An MC study comparing StoNED and the "oldies" (SFA and DEA)," CAWM Discussion Papers 60, University of Münster, Münster Center for Economic Policy (MEP).
  • Handle: RePEc:zbw:cawmdp:60
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62132/1/723879877.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gong, Byeong-Ho & Sickles, Robin C., 1992. "Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 259-284.
    2. T. O. Riecken, 1957. "Discussion," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 5(1), pages 32-34, March.
    3. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    4. W. MacGILLIVRAY, 1957. "Discussion," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 5(2), pages 108-110, July.
    5. Haney, Aoife Brophy & Pollitt, Michael G., 2009. "Efficiency analysis of energy networks: An international survey of regulators," Energy Policy, Elsevier, vol. 37(12), pages 5814-5830, December.
    6. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    7. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    8. Oleg Badunenko & Daniel J. Henderson & Subal C. Kumbhakar, 2012. "When, where and how to perform efficiency estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(4), pages 863-892, October.
    9. Hadri, Kaddour, 1999. "Estimation of a Doubly Heteroscedastic Stochastic Frontier Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 359-363, July.
    10. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    11. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    12. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    13. R. Banker & W. Cooper & E. Grifell-Tajté & Jesús Pastor & Paul Wilson & Eduardo Ley & C. Lovell, 1994. "Validation and generalization of DEA and its uses," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(2), pages 249-314, December.
    14. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    15. Ruggiero, John, 1999. "Efficiency estimation and error decomposition in the stochastic frontier model: A Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 115(3), pages 555-563, June.
    16. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    17. KNEIP, Alois & SIMAR, Léopold, 1995. "A General Framework for Frontier Estimation with Panel Data," LIDAM Discussion Papers CORE 1995060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    19. Perelman, Sergio & Santín, Daniel, 2009. "How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency measurement," European Journal of Operational Research, Elsevier, vol. 199(1), pages 303-310, November.
    20. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    21. K. Hadri & C. Guermat & J. Whittaker, 2003. "Estimation of technical inefficiency effects using panel data and doubly heteroscedastic stochastic production frontiers," Empirical Economics, Springer, vol. 28(1), pages 203-222, January.
    22. Subal Kumbhakar, 1997. "Efficiency estimation with heteroscedasticity in a panel data model," Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 379-386.
    23. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    24. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    25. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    26. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    27. Mark Andor & Frederik Hesse, "undated". "A Monte Carlo Simulation comparing DEA, SFA and two simple approaches to combine efficiency estimates," Working Papers 201177, Institute of Spatial and Housing Economics, Munster Universitary.
    28. Resti, Andrea, 2000. "Efficiency measurement for multi-product industries: A comparison of classic and recent techniques based on simulated data," European Journal of Operational Research, Elsevier, vol. 121(3), pages 559-578, March.
    29. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    30. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, September.
    31. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Di Giorgio & Abraham D Flaxman & Mark W Moses & Nancy Fullman & Michael Hanlon & Ruben O Conner & Alexandra Wollum & Christopher J L Murray, 2016. "Efficiency of Health Care Production in Low-Resource Settings: A Monte-Carlo Simulation to Compare the Performance of Data Envelopment Analysis, Stochastic Distance Functions, and an Ensemble Model," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    2. Mark Andor & Christopher Parmeter, 2017. "Pseudolikelihood estimation of the stochastic frontier model," Applied Economics, Taylor & Francis Journals, vol. 49(55), pages 5651-5661, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    2. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    3. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    4. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    5. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    6. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    7. Mark Andor & Frederik Hesse, "undated". "A Monte Carlo Simulation comparing DEA, SFA and two simple approaches to combine efficiency estimates," Working Papers 201177, Institute of Spatial and Housing Economics, Munster Universitary.
    8. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    9. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    10. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    11. Minegishi, Kota, 2013. "Explaining Production Heterogeneity By Contextual Environments: Two-Stage DEA Application to Technical Change Measurement," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150289, Agricultural and Applied Economics Association.
    12. Krüger, Jens J., 2012. "A Monte Carlo study of old and new frontier methods for efficiency measurement," European Journal of Operational Research, Elsevier, vol. 222(1), pages 137-148.
    13. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    14. Isabel Narbón-Perpiñá & Maria Teresa Balaguer-Coll & Marko Petrović & Emili Tortosa-Ausina, 2020. "Which estimator to measure local governments’ cost efficiency? The case of Spanish municipalities," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(1), pages 51-82, March.
    15. Mark Andor & Christopher Parmeter, 2017. "Pseudolikelihood estimation of the stochastic frontier model," Applied Economics, Taylor & Francis Journals, vol. 49(55), pages 5651-5661, November.
    16. Sakouvogui Kekoura & Shaik Saleem & Doetkott Curt & Magel Rhonda, 2021. "Sensitivity analysis of stochastic frontier analysis models," Monte Carlo Methods and Applications, De Gruyter, vol. 27(1), pages 71-90, March.
    17. Oleg Badunenko & Daniel J. Henderson & Subal C. Kumbhakar, 2012. "When, where and how to perform efficiency estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(4), pages 863-892, October.
    18. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    19. Ondrich, Jan & Ruggiero, John, 2001. "Efficiency measurement in the stochastic frontier model," European Journal of Operational Research, Elsevier, vol. 129(2), pages 434-442, March.
    20. Kortelainen, Mika, 2008. "Estimation of semiparametric stochastic frontiers under shape constraints with application to pollution generating technologies," MPRA Paper 9257, University Library of Munich, Germany.

    More about this item

    Keywords

    efficiency; stochastic non-smooth envelopment of data (StoNED); data envelopment analysis (DEA); stochastic frontier analysis (SFA); monte carlo simulation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • D2 - Microeconomics - - Production and Organizations
    • L5 - Industrial Organization - - Regulation and Industrial Policy
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cawmdp:60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/camuede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.