[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/uts/wpaper/56.html
   My bibliography  Save this paper

Estimating the Term Structure of Volatility in Futures Yield - A Maximum Likelihood Approach

Author

Listed:
Abstract
The volatility structure of 90-day bill futures traded on the the Sydney Futures Exchange is analysed within the framework of the Heath-Jarrow-Morton model. The method involves characterisation of the transition probability density function for the forward rate process represented by the stochastic differential equation in the arbitrage-free economy. Maximisation of the likelihood function then results in the estimates of the parameters of the volatility function. The volatility function is also used in a simulation of the preference-free stochastic differential equation for bill prices.

Suggested Citation

  • Ram Bhar & Carl Chiarella, 1995. "Estimating the Term Structure of Volatility in Futures Yield - A Maximum Likelihood Approach," Working Paper Series 56, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:wpaper:56
    as

    Download full text from publisher

    File URL: http://www.finance.uts.edu.au/research/wpapers/wp56.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    2. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    3. repec:bla:jfinan:v:44:y:1989:i:2:p:375-92 is not listed on IDEAS
    4. Marc Chesney & Robert J. Elliott & Dilip Madan & Hailiang Yang, 1993. "Diffusion Coefficient Estimation and Asset Pricing When Risk Premia and Sensitivities Are Time Varying1," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 85-99, April.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Marc Chesney & Robert J. Elliott & Dilip Madan & Hailiang Yang, 1993. "Diffusion coefficient estimation and asset pricing when risk premia and sensitivities are time varying," Working Papers hal-00610777, HAL.
    7. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    8. Robert A. Jarrow & Arkadev Chatterjea, 2019. "Interest Rates," World Scientific Book Chapters, in: An Introduction to Derivative Securities, Financial Markets, and Risk Management, chapter 2, pages 22-52, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ram Bhar & Carl Chiarella, 1996. "Construction of Zero-Coupon Yield Curve From Coupon Bond Yield Using Australian Data," Working Paper Series 70, Finance Discipline Group, UTS Business School, University of Technology, Sydney.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram Bhar & Carl Chiarella, 1995. "The Estimation of the Heath-Jarrow-Morton Model by Use of Kalman Filtering Techniques," Working Paper Series 54, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    2. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    3. repec:wyi:journl:002108 is not listed on IDEAS
    4. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    5. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    6. Egorov, Alexei V. & Li, Haitao & Xu, Yuewu, 2003. "Maximum likelihood estimation of time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 114(1), pages 107-139, May.
    7. Kristensen, Dennis, 2004. "A semiparametric single-factor model of the term structure," LSE Research Online Documents on Economics 24741, London School of Economics and Political Science, LSE Library.
    8. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    9. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. Hong, Yongmiao & Li, Haitao, 2002. "Nonparametric specification testing for continuous-time models with application to spot interest rates," SFB 373 Discussion Papers 2002,32, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    13. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. Kolkiewicz, A. W. & Tan, K. S., 2006. "Unit-Linked Life Insurance Contracts with Lapse Rates Dependent on Economic Factors," Annals of Actuarial Science, Cambridge University Press, vol. 1(1), pages 49-78, March.
    16. Ramaprasad Bhar & Carl Chiarella, 1997. "Interest rate futures: estimation of volatility parameters in an arbitrage-free framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(4), pages 181-199.
    17. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    18. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    19. Carl Chiarella & Christina Sklibosios, 2003. "A Class of Jump-Diffusion Bond Pricing Models within the HJM Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 87-127, September.
    20. Gupta, Anurag & Subrahmanyam, Marti G., 2000. "An empirical examination of the convexity bias in the pricing of interest rate swaps," Journal of Financial Economics, Elsevier, vol. 55(2), pages 239-279, February.
    21. Michaelides, Alexander & Ng, Serena, 2000. "Estimating the rational expectations model of speculative storage: A Monte Carlo comparison of three simulation estimators," Journal of Econometrics, Elsevier, vol. 96(2), pages 231-266, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:wpaper:56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/sfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.