[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/urs/urswps/14-02.html
   My bibliography  Save this paper

What does the Yield Curve imply about Investor Expectations?

Author

Listed:
Abstract
We find that investors' expectations of U.S. nominal yields, at different maturities and forecast horizons, exhibit significant time-variation during the Great Moderation. Nominal zero-coupon bond yields for the U.S. are used to fit the yield curve using a latent factor model. In the benchmark model, the VAR process used to characterize the conditional forecasts of yields has constant coefficients. The alternative class of models assume that investors use adaptive learning, in the form of a constant gain algorithm and different endogenous gain algorithms, which we propose here. Our results indicate that incorporating time-varying coefficients in the conditional forecasts of yields lead to large improvements in forecasting performance, at different maturities and horizons. These improvements are even more substantial during the Great Recession. We conclude that our results provide strong empirical motivation to use the class of adaptive learning models considered here, for modeling potential investor expectation formation in periods of low and high volatility, and the endogenous learning model leads to significant improvements over the benchmark in periods of high volatility. A policy experiment, which simulates a surprise shock to the level of the yield curve, illustrates that the conditional forecasts of yields implied by the learning models do significantly better at capturing the response observed in the realized yield curve, relative to the constant-coefficients model. Furthermore, the endogenous learning algorithm does well at matching the time-series patterns observed in expected excess returns implied by the Survey of Professional Forecasters.

Suggested Citation

  • Eric Gaus & Arunima Sinha, 2014. "What does the Yield Curve imply about Investor Expectations?," Working Papers 14-02, Ursinus College, Department of Economics.
  • Handle: RePEc:urs:urswps:14-02
    as

    Download full text from publisher

    File URL: http://webpages.ursinus.edu/egaus/Research/GSYields.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Greg Duffee, 2011. "Forecasting with the term structure: The role of no-arbitrage restrictions," Economics Working Paper Archive 576, The Johns Hopkins University,Department of Economics.
    2. Eric T. Swanson & John C. Williams, 2014. "Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates," American Economic Review, American Economic Association, vol. 104(10), pages 3154-3185, October.
    3. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    4. Lars E.O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994," NBER Working Papers 4871, National Bureau of Economic Research, Inc.
    5. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
    6. N. Gregory Mankiw & Ricardo Reis & Justin Wolfers, 2004. "Disagreement about Inflation Expectations," NBER Chapters, in: NBER Macroeconomics Annual 2003, Volume 18, pages 209-270, National Bureau of Economic Research, Inc.
    7. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    8. Stefano Eusepi & Bruce Preston, 2011. "Expectations, Learning, and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 101(6), pages 2844-2872, October.
    9. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    10. Joseph Haubrich & George Pennacchi & Peter Ritchken, 2012. "Inflation Expectations, Real Rates, and Risk Premia: Evidence from Inflation Swaps," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1588-1629.
    11. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    12. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    13. Albert Marcet & Juan P. Nicolini, 2003. "Recurrent Hyperinflations and Learning," American Economic Review, American Economic Association, vol. 93(5), pages 1476-1498, December.
    14. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    15. Svensson, Lars E O, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992-4," CEPR Discussion Papers 1051, C.E.P.R. Discussion Papers.
    16. Dewachter, Hans & Lyrio, Marco, 2006. "Macro Factors and the Term Structure of Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(1), pages 119-140, February.
    17. Arunima Sinha, 2016. "Learning and the Yield Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 513-547, March.
    18. Glenn D. Rudebusch & Tao Wu, 2007. "Accounting for a Shift in Term Structure Behavior with No-Arbitrage and Macro-Finance Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 395-422, March.
    19. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
    20. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    21. Dick, Christian D. & Schmeling, Maik & Schrimpf, Andreas, 2013. "Macro-expectations, aggregate uncertainty, and expected term premia," European Economic Review, Elsevier, vol. 58(C), pages 58-80.
    22. Lloyd B. Thomas, 1999. "Survey Measures of Expected U.S. Inflation," Journal of Economic Perspectives, American Economic Association, vol. 13(4), pages 125-144, Fall.
    23. Gurkaynak, Refet S. & Sack, Brian & Wright, Jonathan H., 2007. "The U.S. Treasury yield curve: 1961 to the present," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2291-2304, November.
    24. Ju Xiang & Xiaoneng Zhu, 2013. "A Regime-Switching Nelson--Siegel Term Structure Model and Interest Rate Forecasts," Journal of Financial Econometrics, Oxford University Press, vol. 11(3), pages 522-555, June.
    25. Refet S. Gürkaynak & Brian Sack & Jonathan H. Wright, 2010. "The TIPS Yield Curve and Inflation Compensation," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 70-92, January.
    26. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    27. Thomas Laubach & Robert J. Tetlow & John C. Williams, 2007. "Learning and the Role of Macroeconomic Factors in the Term Structure of Interest Rates," 2007 Meeting Papers 476, Society for Economic Dynamics.
    28. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    29. Michiel De Pooter, 2007. "Examining the Nelson-Siegel Class of Term Structure Models," Tinbergen Institute Discussion Papers 07-043/4, Tinbergen Institute.
    30. Milani, Fabio, 2014. "Learning and time-varying macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 94-114.
    31. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    32. Jeffrey C. Fuhrer, 1996. "Monetary Policy Shifts and Long-Term Interest Rates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(4), pages 1183-1209.
    33. Eric Gaus, 2013. "Time-Varying Parameters and Endogenous Learning Algorithms," Working Papers 13-02, Ursinus College, Department of Economics.
    34. Jacobs,Donald P. & Kalai,Ehud & Kamien,Morton I. & Schwartz,Nancy L. (ed.), 1998. "Frontiers of Research in Economic Theory," Cambridge Books, Cambridge University Press, number 9780521635387, September.
    35. Kozicki, Sharon & Tinsley, P. A., 2001. "Shifting endpoints in the term structure of interest rates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 613-652, June.
    36. Bianchi, Francesco & Mumtaz, Haroon & Surico, Paolo, 2009. "The great moderation of the term structure of UK interest rates," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 856-871, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaus, Eric & Sinha, Arunima, 2017. "Characterizing investor expectations for assets with varying risk," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 990-999.
    2. Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2016. "The term structure of expectations and bond yields," Staff Reports 775, Federal Reserve Bank of New York.
    3. Faria, Adriano & Almeida, Caio, 2018. "A hybrid spline-based parametric model for the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 72-94.
    4. Erhard RESCHENHOFER & Thomas STARK, 2019. "Forecasting the Yield Curve with Dynamic Factors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 101-113, March.
    5. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    6. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    7. Guidolin, Massimo & Pedio, Manuela, 2019. "Forecasting and trading monetary policy effects on the riskless yield curve with regime switching Nelson–Siegel models," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    8. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    9. Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2017. "Forecasting the term structure of government bond yields in unstable environments," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 209-225.
    10. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    11. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    12. Guidolin, Massimo & Thornton, Daniel L., 2018. "Predictions of short-term rates and the expectations hypothesis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.
    13. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2012. "Forecasting government bond yields with large Bayesian vector autoregressions," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2026-2047.
    14. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," MPRA Paper 63844, University Library of Munich, Germany.
    15. Vahidin Jeleskovic & Anastasios Demertzidis, 2018. "Comparing different methods for the estimation of interbank intraday yield curves," MAGKS Papers on Economics 201839, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    16. Zhu, Xiaoneng & Rahman, Shahidur, 2015. "A regime-switching Nelson–Siegel term structure model of the macroeconomy," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 1-17.
    17. Glenn D. Rudebusch, 2010. "Macro‐Finance Models Of Interest Rates And The Economy," Manchester School, University of Manchester, vol. 78(s1), pages 25-52, September.
    18. Koopman, Siem Jan & van der Wel, Michel, 2013. "Forecasting the US term structure of interest rates using a macroeconomic smooth dynamic factor model," International Journal of Forecasting, Elsevier, vol. 29(4), pages 676-694.
    19. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Bond portfolio optimization using dynamic factor models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 128-158.

    More about this item

    Keywords

    Adaptive learning; Investor beliefs; Monetary policy; Excess returns;
    All these keywords.

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:urs:urswps:14-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eric Gaus (email available below). General contact details of provider: https://edirc.repec.org/data/ebursus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.