[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/unm/umagsb/2015031.html
   My bibliography  Save this paper

Feasible sets, comparative risk aversion, and comparative uncertainty aversion in bargaining

Author

Listed:
  • Driesen, B.W.I.
  • Lombardi, M.
  • Peters, H.J.M.

    (Quantitative Economics)

Abstract
We study feasible sets of the bargaining problem under two different assumptions: the players are subjective expected utility maximizers or the players are Choquet expected utility maximizers. For the latter case, we consider the effects on bargaining solutions when players become more risk averse and when they become more uncertainty averse.

Suggested Citation

  • Driesen, B.W.I. & Lombardi, M. & Peters, H.J.M., 2015. "Feasible sets, comparative risk aversion, and comparative uncertainty aversion in bargaining," Research Memorandum 031, Maastricht University, Graduate School of Business and Economics (GSBE).
  • Handle: RePEc:unm:umagsb:2015031
    DOI: 10.26481/umagsb.2015031
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/812317/guid-a35685f9-cdbd-45e3-8774-c1605dad201c-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umagsb.2015031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Volij, Oscar & Winter, Eyal, 2002. "On risk aversion and bargaining outcomes," Games and Economic Behavior, Elsevier, vol. 41(1), pages 120-140, October.
    2. Roth, Alvin E & Rothblum, Uriel G, 1982. "Risk Aversion and Nash's Solution for Bargaining Games with Risky Outcomes," Econometrica, Econometric Society, vol. 50(3), pages 639-647, May.
    3. Ghirardato, Paolo & Marinacci, Massimo, 2002. "Ambiguity Made Precise: A Comparative Foundation," Journal of Economic Theory, Elsevier, vol. 102(2), pages 251-289, February.
    4. Hans Peters, 1992. "A Criterion for Comparing Strength of Preference with an Application to Bargaining," Operations Research, INFORMS, vol. 40(5), pages 1018-1022, October.
    5. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    6. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    7. Rubinstein, Ariel & Safra, Zvi & Thomson, William, 1992. "On the Interpretation of the Nash Bargaining Solution and Its Extension to Non-expected Utility Preferences," Econometrica, Econometric Society, vol. 60(5), pages 1171-1186, September.
    8. Kalai, Ehud, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Econometrica, Econometric Society, vol. 45(7), pages 1623-1630, October.
    9. Kobberling, Veronika & Peters, Hans, 2003. "The effect of decision weights in bargaining problems," Journal of Economic Theory, Elsevier, vol. 110(1), pages 154-175, May.
    10. Safra, Zvi & Zhou, Lin & Zilcha, Itzhak, 1990. "Risk Aversion in the Nash Bargaining Problem with Risky Outcomes and Risky Disagreement Points," Econometrica, Econometric Society, vol. 58(4), pages 961-965, July.
    11. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    12. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    13. Safra Zvi & Zilcha Itzhak, 1993. "Bargaining Solutions without the Expected Utility Hypothesis," Games and Economic Behavior, Elsevier, vol. 5(2), pages 288-306, April.
    14. Kannai, Yakar, 1977. "Concavifiability and constructions of concave utility functions," Journal of Mathematical Economics, Elsevier, vol. 4(1), pages 1-56, March.
    15. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    16. Yaari, Menahem E., 1969. "Some remarks on measures of risk aversion and on their uses," Journal of Economic Theory, Elsevier, vol. 1(3), pages 315-329, October.
    17. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Lombardi & Naoki Yoshihara, 2020. "Partially-honest Nash implementation: a full characterization," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 871-904, October.
    2. William Thomson, 2022. "On the axiomatic theory of bargaining: a survey of recent results," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 491-542, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobberling, Veronika & Peters, Hans, 2003. "The effect of decision weights in bargaining problems," Journal of Economic Theory, Elsevier, vol. 110(1), pages 154-175, May.
    2. Volij, Oscar & Winter, Eyal, 2002. "On risk aversion and bargaining outcomes," Games and Economic Behavior, Elsevier, vol. 41(1), pages 120-140, October.
    3. Rausser, Gordon C. & Simon, Leo K., 2016. "Nash bargaining and risk aversion," Games and Economic Behavior, Elsevier, vol. 95(C), pages 1-9.
    4. Philip Grech & Oriol Tejada, 2018. "Divide the dollar and conquer more: sequential bargaining and risk aversion," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1261-1286, November.
    5. Izhakian, Yehuda, 2017. "Expected utility with uncertain probabilities theory," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 91-103.
    6. Ehud Kalai, 1983. "Solutions to the Bargaining Problem," Discussion Papers 556, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    7. Craig Webb, 2013. "Bargaining with subjective mixtures," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(1), pages 15-39, January.
    8. Cressman, Ross & Gallego, Maria, 2009. "On the ranking of bilateral bargaining opponents," Mathematical Social Sciences, Elsevier, vol. 58(1), pages 64-83, July.
    9. Karni, Edi & Maccheroni, Fabio & Marinacci, Massimo, 2015. "Ambiguity and Nonexpected Utility," Handbook of Game Theory with Economic Applications,, Elsevier.
    10. Grant, Simon & Quiggin, John, 2005. "Increasing uncertainty: a definition," Mathematical Social Sciences, Elsevier, vol. 49(2), pages 117-141, March.
    11. Eric van Damme, 1984. "The Nash Bargaining Solution is Optimal," Discussion Papers 597, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    12. Zimper, Alexander, 2009. "Half empty, half full and why we can agree to disagree forever," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 283-299, August.
    13. Burgos, Albert & Grant, Simon & Kajii, Atsushi, 2002. "Bargaining and Boldness," Games and Economic Behavior, Elsevier, vol. 38(1), pages 28-51, January.
    14. Enrico G. De Giorgi & Ola Mahmoud, 2016. "Diversification preferences in the theory of choice," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 143-174, November.
    15. Haluk Ergin & Faruk Gul, 2004. "A subjective theory of compound lotteries," Econometric Society 2004 North American Summer Meetings 152, Econometric Society.
    16. Hagen Lindstädt, 2004. "Entscheidungskalküle jenseits des subjektiven Erwartungsnutzens," Schmalenbach Journal of Business Research, Springer, vol. 56(6), pages 495-519, September.
    17. Hanany, Eran & Safra, Zvi, 2000. "Existence and Uniqueness of Ordinal Nash Outcomes," Journal of Economic Theory, Elsevier, vol. 90(2), pages 254-276, February.
    18. Jonathan Shalev, 2002. "Loss Aversion and Bargaining," Theory and Decision, Springer, vol. 52(3), pages 201-232, May.
    19. Smorodinsky, Rann, 2005. "Nash's bargaining solution when the disagreement point is random," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 3-11, July.
    20. Nir Dagan & Oscar Volij & Eyal Winter, 2001. "The time-preference Nash solution," Economic theory and game theory 019, Nir Dagan.

    More about this item

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umagsb:2015031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.