[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20210001.html
   My bibliography  Save this paper

The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies

Author

Listed:
  • Anna Baiardi

    (Erasmus University Rotterdam)

  • Andrea A. Naghi

    (Erasmus University Rotterdam)

Abstract
A new and rapidly growing econometric literature is making advances in the problem of using machine learning (ML) methods for causal inference questions. Yet, the empirical economics literature has not started to fully exploit the strengths of these modern methods. We revisit influential empirical studies with causal machine learning methods and identify several advantages of using these techniques. We show that these advantages and their implications are empirically relevant and that the use of these methods can improve the credibility of causal analysis.

Suggested Citation

  • Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Tinbergen Institute Discussion Papers 21-001/V, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20210001
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/21001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tatyana Deryugina & Garth Heutel & Nolan H. Miller & David Molitor & Julian Reif, 2019. "The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction," American Economic Review, American Economic Association, vol. 109(12), pages 4178-4219, December.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Nathan Nunn, 2007. "Relationship-Specificity, Incomplete Contracts, and the Pattern of Trade," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 569-600.
    4. Fair, Ray C, 1978. "The Effect of Economic Events on Votes for President," The Review of Economics and Statistics, MIT Press, vol. 60(2), pages 159-173, May.
    5. Alberto Alesina & Paola Giuliano & Nathan Nunn, 2013. "On the Origins of Gender Roles: Women and the Plough," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(2), pages 469-530.
    6. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    7. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    8. Anthony Strittmatter, 2018. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," Papers 1812.06533, arXiv.org, revised Dec 2021.
    9. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    10. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    11. Stefano DellaVigna & Ethan Kaplan, 2007. "The Fox News Effect: Media Bias and Voting," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1187-1234.
    12. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    13. Nathan Nunn & Daniel Trefler, 2010. "The Structure of Tariffs and Long-Term Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(4), pages 158-194, October.
    14. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    15. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    16. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    17. Pissarides, Christopher A, 1980. "British Government Popularity and Economic Performance," Economic Journal, Royal Economic Society, vol. 90(3593), pages 569-581, September.
    18. Prashant Loyalka & Anna Popova & Guirong Li & Zhaolei Shi, 2019. "Does Teacher Training Actually Work? Evidence from a Large-Scale Randomized Evaluation of a National Teacher Training Program," American Economic Journal: Applied Economics, American Economic Association, vol. 11(3), pages 128-154, July.
    19. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    20. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    21. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Clarke & Annalivia Polselli, 2023. "Double Machine Learning for Static Panel Models with Fixed Effects," Papers 2312.08174, arXiv.org, revised Sep 2024.
    2. Olga Takács & János Vincze, 2023. "Heterogeneous wage structure effects: a partial European East-West comparison," CERS-IE WORKING PAPERS 2305, Institute of Economics, Centre for Economic and Regional Studies.
    3. Netta Barak‐Corren & Yoav Kan‐Tor & Nelson Tebbe, 2022. "Examining the effects of antidiscrimination laws on children in the foster care and adoption systems," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 19(4), pages 1003-1066, December.
    4. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
    2. Anna Baiardi & Andrea A Naghi, 2024. "The value added of machine learning to causal inference: evidence from revisited studies," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages 213-234.
    3. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    4. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    5. Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Economics Working Paper Series 2108, University of St. Gallen, School of Economics and Political Science.
    6. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    7. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    8. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    9. Falco J. Bargagli Stoffi & Kenneth De Beckker & Joana E. Maldonado & Kristof De Witte, 2021. "Assessing Sensitivity of Machine Learning Predictions.A Novel Toolbox with an Application to Financial Literacy," Papers 2102.04382, arXiv.org.
    10. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    11. Delprato, Marcos & Frola, Alessia & Antequera, Germán, 2022. "Indigenous and non-Indigenous proficiency gaps for out-of-school and in-school populations: A machine learning approach," International Journal of Educational Development, Elsevier, vol. 93(C).
    12. Carl Bonander & Mikael Svensson, 2021. "Using causal forests to assess heterogeneity in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 30(8), pages 1818-1832, August.
    13. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    14. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    15. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    16. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    17. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    18. Aysegül Kayaoglu & Ghassan Baliki & Tilman Brück & Melodie Al Daccache & Dorothee Weiffen, 2023. "How to conduct impact evaluations in humanitarian and conflict settings," HiCN Working Papers 387, Households in Conflict Network.
    19. Gazeaud, Jules & Khan, Nausheen & Mvukiyehe, Eric & Sterck, Olivier, 2023. "With or without him? Experimental evidence on cash grants and gender-sensitive trainings in Tunisia," Journal of Development Economics, Elsevier, vol. 165(C).
    20. Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed," Labour Economics, Elsevier, vol. 65(C).

    More about this item

    Keywords

    Machine learning; causal inference; average treatment effects; heterogeneous treatment effects;
    All these keywords.

    JEL classification:

    • D04 - Microeconomics - - General - - - Microeconomic Policy: Formulation; Implementation; Evaluation
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20210001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.