[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/wyi/wpaper/002400.html
   My bibliography  Save this paper

Asymptotic F Tests under Possibly Weak Identification

Author

Listed:
  • Julian Martinez-Iriarte
  • Yixiao Sun
  • Xuexin Wang
Abstract
This paper develops asymptotic F tests robust to weak identification and temporal dependence. The test statistics are modified versions of the S statistic of Stock and Wright (2000) and the K statistic of Kleibergen (2005), both of which are based on the continuous updating generalized method of moments. In the former case, the modification involves only a multiplicative degree-of-freedom adjustment. In the latter case, the modification involves an additional multiplicative adjustment that uses a J statistic for testing overidentification. By adopting fixed-smoothing asymptotics, we show that both the modified S statistic and the modified K statistic are asymptotically F-distributed. The asymptotic F theory accounts for the estimation errors in the underlying heteroskedasticity and autocorrelation robust variance estimators, which the asymptotic chi-squared theory ignores. Monte Carlo simulations show that the F approximations are much more accurate than the corresponding chi-squared approximations in finite samples.

Suggested Citation

  • Julian Martinez-Iriarte & Yixiao Sun & Xuexin Wang, 2019. "Asymptotic F Tests under Possibly Weak Identification," Working Papers 2019-03-12, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  • Handle: RePEc:wyi:wpaper:002400
    as

    Download full text from publisher

    File URL: https://econpub.xmu.edu.cn/research/repec/upload/201903131910118038.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(1), pages 116-142, February.
    2. Yixiao Sun, 2013. "A heteroskedasticity and autocorrelation robust F test using an orthonormal series variance estimator," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-26, February.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    5. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    6. Mehmet Caner, 2010. "Testing, Estimation in GMM and CUE with Nearly-Weak Identification," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 330-363.
    7. Hall, Robert E, 1988. "Intertemporal Substitution in Consumption," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 339-357, April.
    8. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    9. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    10. Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
    11. Sun, Yixiao, 2014. "Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference," Journal of Econometrics, Elsevier, vol. 178(P3), pages 659-677.
    12. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    13. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    14. Andrews, Donald W.K. & Guggenberger, Patrik, 2017. "Asymptotic Size Of Kleibergen’S Lm And Conditional Lr Tests For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1046-1080, October.
    15. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice Rejoinder," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 574-575, October.
    16. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1350-1366, December.
    17. Yixiao Sun, 2014. "Fixed-smoothing Asymptotics and AsymptoticFandtTests in the Presence of Strong Autocorrelation," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 23-63, Emerald Group Publishing Limited.
    18. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    19. Michael Jansson, 2004. "The Error in Rejection Probability of Simple Autocorrelation Robust Tests," Econometrica, Econometric Society, vol. 72(3), pages 937-946, May.
    20. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    21. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    22. Donald W.K. Andrews, 2017. "Identification-Robust Subvector Inference," Cowles Foundation Discussion Papers 2105, Cowles Foundation for Research in Economics, Yale University, revised Sep 2017.
    23. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    24. Tauchen, George, 1986. "Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained from Financial Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 397-416, October.
    25. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    26. Sun, Yixiao, 2011. "Robust trend inference with series variance estimator and testing-optimal smoothing parameter," Journal of Econometrics, Elsevier, vol. 164(2), pages 345-366, October.
    27. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, January.
    28. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    29. Tauchen, George, 1986. "Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained from Financial Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 423-425, October.
    30. Yixiao Sun & Min Seong Kim, 2015. "Asymptotic F-Test in a GMM Framework with Cross-Sectional Dependence," The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 210-233, March.
    31. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    32. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 541-559, October.
    33. Kocherlakota, Narayana R., 1990. "On tests of representative consumer asset pricing models," Journal of Monetary Economics, Elsevier, vol. 26(2), pages 285-304, October.
    34. Bertille Antoine & Eric Renault, 2009. "Efficient GMM with nearly-weak instruments," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 135-171, January.
    35. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    2. Ulrich K. Müller & Mark W. Watson, 2020. "Low-Frequency Analysis of Economic Time Series," Working Papers 2020-13, Princeton University. Economics Department..
    3. Manuel Denzer & Constantin Weiser, 2021. "Beyond F-statistic - A General Approach for Assessing Weak Identification," Working Papers 2107, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.
    2. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    3. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    4. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    5. Liu, Cheng & Sun, Yixiao, 2019. "A simple and trustworthy asymptotic t test in difference-in-differences regressions," Journal of Econometrics, Elsevier, vol. 210(2), pages 327-362.
    6. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LP, vol. 18(4), pages 951-980, December.
    7. Yixiao Sun & Xuexin Wang, 2019. "An Asymptotically F-Distributed Chow Test in the Presence of Heteroscedasticity and Autocorrelation," Papers 1911.03771, arXiv.org.
    8. Sun, Yixiao & Yang, Jingjing, 2020. "Testing-optimal kernel choice in HAR inference," Journal of Econometrics, Elsevier, vol. 219(1), pages 123-136.
    9. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    10. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    11. Hwang, Jungbin & Sun, Yixiao, 2018. "SIMPLE, ROBUST, AND ACCURATE F AND t TESTS IN COINTEGRATED SYSTEMS," Econometric Theory, Cambridge University Press, vol. 34(5), pages 949-984, October.
    12. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    13. Eben Lazarus & Daniel J. Lewis & James H. Stock, 2021. "The Size‐Power Tradeoff in HAR Inference," Econometrica, Econometric Society, vol. 89(5), pages 2497-2516, September.
    14. Sun, Yixiao, 2013. "Fixed-smoothing Asymptotics in a Two-step GMM Framework," University of California at San Diego, Economics Working Paper Series qt64x4z265, Department of Economics, UC San Diego.
    15. Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
    16. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    17. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    18. Ulrich K. Müller & Mark W. Watson, 2020. "Low-Frequency Analysis of Economic Time Series," Working Papers 2020-13, Princeton University. Economics Department..
    19. Casini, Alessandro, 2024. "The fixed-b limiting distribution and the ERP of HAR tests under nonstationarity," Journal of Econometrics, Elsevier, vol. 238(2).
    20. Jungbin Hwang, 2017. "Simple and Trustworthy Cluster-Robust GMM Inference," Working papers 2017-19, University of Connecticut, Department of Economics, revised Aug 2020.

    More about this item

    Keywords

    Heteroskedasticity and autocorrelation robust variance; continuous updating GMM; F distribution; fixed-smoothing asymptotics; weak identification;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wyi:wpaper:002400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WISE Technical Team (email available below). General contact details of provider: https://www.wise.xmu.edu.cn/english/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.