[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202161.html
   My bibliography  Save this paper

Forecasting Stock-Market Tail Risk and Connectedness in Advanced Economies Over a Century: The Role of Gold-to-Silver and Gold-to-Platinum Price Ratios

Author

Listed:
  • Afees A. Salisu

    (Centre for Econometric & Allied Research, University of Ibadan, Ibadan, Nigeria; Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Christian Pierdzioch

    (Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, Germany)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • David Gabauer

    (Data Analysis Systems, Software Competence Center Hagenberg, Hagenberg, Austria)

Abstract
We examine the predictive value of risk perceptions as measured in terms of the gold-to-silver and gold-to-platinum price ratios for stock-market tail risks and their connectedness in eight major industrialized economies using monthly data for the period 1916:02-2020:10 and 1968:01-2020:10, where we use four variants of the popular Conditional Autoregressive Value at Risk (CAViaR) framework to estimate the tail risks for both 1% and 5% VaRs. Our findings for the short sample period show that the gold-to-silver price ratio resembles the gold-to-platinum price ratios in that it is a useful proxy for global risk. Our findings for the long sample period show, despite some heterogeneity across economies, that the gold-to-silver price ratio often helps to out-of-sample forecast for both 1% and 5% stock market tail risks, particularly when a forecaster suffers a higher loss from underestimation of tail risks than from a corresponding overestimation of the same absolute size. We also find that using the gold-to-silver price ratio for forecasting the total connectedness of stock markets is beneficial for an investor who suffers a higher loss from an underestimation of total connectedness (i.e., an investor who otherwise would overestimate the benefits from portfolio diversification) than from a comparable overestimation.

Suggested Citation

  • Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & David Gabauer, 2021. "Forecasting Stock-Market Tail Risk and Connectedness in Advanced Economies Over a Century: The Role of Gold-to-Silver and Gold-to-Platinum Price Ratios," Working Papers 202161, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202161
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan, 2022. "Oil tail risks and the forecastability of the realized variance of oil-price: Evidence from over 150 years of data," Finance Research Letters, Elsevier, vol. 46(PB).
    2. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    3. Chatziantoniou, Ioannis & Gabauer, David, 2021. "EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 1-14.
    4. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    5. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    6. Huang, Darien & Kilic, Mete, 2019. "Gold, platinum, and expected stock returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 50-75.
    7. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    8. Caio Almeida & Kym Ardison & René Garcia & Jose Vicente, 2017. "Nonparametric Tail Risk, Stock Returns, and the Macroeconomy," Journal of Financial Econometrics, Oxford University Press, vol. 15(3), pages 333-376.
    9. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    10. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "International tail risk and World Fear," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 244-259.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    13. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    14. Caio Almeida & Kym Ardison & René Garcia & Jose Vicente, 2017. "Erratum to Rejoinder on: Nonparametric Tail Risk, Stock Returns, and the Macroeconomy," Journal of Financial Econometrics, Oxford University Press, vol. 15(3), pages 504-504.
    15. O'Connor, Fergal A. & Lucey, Brian M. & Batten, Jonathan A. & Baur, Dirk G., 2015. "The financial economics of gold — A survey," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 186-205.
    16. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    17. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    18. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    19. Gupta, Rangan & Sheng, Xin & Pierdzioch, Christian & Ji, Qiang, 2021. "Disaggregated oil shocks and stock-market tail risks: Evidence from a panel of 48 economics," Research in International Business and Finance, Elsevier, vol. 58(C).
    20. Salisu, Afees A. & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil prices over 150 years: The role of tail risks," Resources Policy, Elsevier, vol. 75(C).
    21. Caio Almeida & Kym Ardison & René Garcia & Jose Vicente, 2017. "Rejoinder on: Nonparametric Tail Risk, Stock Returns, and the Macroeconomy," Journal of Financial Econometrics, Oxford University Press, vol. 15(3), pages 418-426.
    22. John Y. Campbell, 2007. "Estimating the Equity Premium," NBER Working Papers 13423, National Bureau of Economic Research, Inc.
    23. Boubaker, Heni & Cunado, Juncal & Gil-Alana, Luis A. & Gupta, Rangan, 2020. "Global crises and gold as a safe haven: Evidence from over seven and a half centuries of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    24. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    25. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan, 2021. "Geopolitical risk and forecastability of tail risk in the oil market: Evidence from over a century of monthly data," Energy, Elsevier, vol. 235(C).
    26. Salisu, Afees A. & Gupta, Rangan & Pierdzioch, Christian, 2022. "Predictability of tail risks of Canada and the U.S. Over a Century: The role of spillovers and oil tail Risks☆," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    27. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    28. Christian Pierdzioch & Marian Risse & Sebastian Rohloff, 2016. "Fluctuations of the real exchange rate, real interest rates, and the dynamics of the price of gold in a small open economy," Empirical Economics, Springer, vol. 51(4), pages 1481-1499, December.
    29. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    30. Bouri, Elie & Demirer, Riza & Gupta, Rangan & Wohar, Mark E., 2021. "Gold, platinum and the predictability of bond risk premia," Finance Research Letters, Elsevier, vol. 38(C).
    31. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    32. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    33. Rangan Gupta & Christian Pierdzioch & Wing-Keung Wong, 2021. "A Note on Forecasting the Historical Realized Variance of Oil-Price Movements: The Role of Gold-to-Silver and Gold-to-Platinum Price Ratios," Energies, MDPI, vol. 14(20), pages 1-12, October.
    34. Niall Ferguson, 2008. "Earning from History? Financial Markets and the Approach of World Wars," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 39(1 (Spring), pages 431-490.
    35. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    36. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    37. Chevapatrakul, Thanaset & Xu, Zhongxiang & Yao, Kai, 2019. "The impact of tail risk on stock market returns: The role of market sentiment," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 289-301.
    38. Gkillas, Konstantinos & Konstantatos, Christoforos & Tsagkanos, Athanasios & Siriopoulos, Costas, 2021. "Do economic news releases affect tail risk? Evidence from an emerging market," Finance Research Letters, Elsevier, vol. 40(C).
    39. Rangan Gupta & Xin Sheng & Christian Pierdzioch & Qiang Ji, 2021. "Disaggregated Oil Shocks and Stock-Market Tail Risks: Evidence from a Panel of 48 Countries," Working Papers 202106, University of Pretoria, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyriazis, Nikolaos & Corbet, Shaen, 2024. "Evaluating the dynamic connectedness of financial assets and bank indices during black-swan events: A Quantile-VAR approach," Energy Economics, Elsevier, vol. 131(C).
    2. Demirer, Riza & Gabauer, David & Gupta, Rangan & Nielsen, Joshua, 2024. "Gold, platinum and the predictability of bubbles in global stock markets," Resources Policy, Elsevier, vol. 90(C).
    3. Zhang, Yi & Zhou, Long & Wu, Baoxiu & Liu, Fang, 2024. "Tail risk transmission from the United States to emerging stock Markets: Empirical evidence from multivariate quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    4. Riza Demirer & David Gabauer & Rangan Gupta & Joshua Nielsen, 2023. "Gold-to-Platinum Price Ratio and the Predictability of Bubbles in Financial Markets," Working Papers 202317, University of Pretoria, Department of Economics.
    5. Kyriazis, Nikolaos A. & Papadamou, Stephanos & Tzeremes, Panayiotis, 2023. "Are benchmark stock indices, precious metals or cryptocurrencies efficient hedges against crises?," Economic Modelling, Elsevier, vol. 128(C).
    6. Wang, Jiashun & Wang, Jiqian & Ma, Feng, 2024. "International commodity market and stock volatility predictability: Evidence from G7 countries," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 62-71.
    7. Choi, Insu & Kim, Woo Chang, 2023. "Estimating Historical Downside Risks of Global Financial Market Indices via Inflation Rate-Adjusted Dependence Graphs," Research in International Business and Finance, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & Reneé van Eyden, 2023. "Climate risks and U.S. stock‐market tail risks: A forecasting experiment using over a century of data," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 228-244, June.
    2. Salisu, Afees A. & Olaniran, Abeeb & Tchankam, Jean Paul, 2022. "Oil tail risk and the tail risk of the US Dollar exchange rates," Energy Economics, Elsevier, vol. 109(C).
    3. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan, 2021. "Geopolitical risk and forecastability of tail risk in the oil market: Evidence from over a century of monthly data," Energy, Elsevier, vol. 235(C).
    4. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2023. "Tail risks and forecastability of stock returns of advanced economies: evidence from centuries of data," The European Journal of Finance, Taylor & Francis Journals, vol. 29(4), pages 466-481, March.
    5. Salisu, Afees A. & Gupta, Rangan & Pierdzioch, Christian, 2022. "Predictability of tail risks of Canada and the U.S. Over a Century: The role of spillovers and oil tail Risks☆," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    6. Abakah, Emmanuel Joel Aikins & Brahim, Mariem & Carlotti, Jean-Etienne & Tiwari, Aviral Kumar & Mensi, Walid, 2024. "Extreme downside risk connectedness and portfolio hedging among the G10 currencies," International Economics, Elsevier, vol. 178(C).
    7. Afees A. Salisu & Rangan Gupta & Christian Pierdzioch, 2021. "Predictability of Tail Risks of Canada and the U.S. Over a Century: The Role of Spillovers and Oil Tail Risks," Working Papers 202127, University of Pretoria, Department of Economics.
    8. David Gabauer & Rangan Gupta & Sayar Karmakar & Joshua Nielsen, 2022. "Stock Market Bubbles and the Forecastability of Gold Returns (and Volatility)," Working Papers 202228, University of Pretoria, Department of Economics.
    9. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    10. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    11. Juncal Cunado & David Gabauer & Rangan Gupta & Chien-Chiang Lee, 2022. "On the Propagation Mechanism of International Real Interest Rate Spillovers: Evidence from More than 200 Years of Data," Working Papers 202212, University of Pretoria, Department of Economics.
    12. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Forecasting Stock Market Returns in Advanced Economies over a Century," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    13. Liu, Peipei & Huang, Wei-Qiang, 2022. "Modelling international sovereign risk information spillovers: A multilayer network approach," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    14. Hu, Yang & Lang, Chunlin & Corbet, Shaen & Hou, Yang (Greg) & Oxley, Les, 2023. "Exploring the dynamic behaviour of commodity market tail risk connectedness during the negative WTI pricing event," Energy Economics, Elsevier, vol. 125(C).
    15. Salisu, Afees A. & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil prices over 150 years: The role of tail risks," Resources Policy, Elsevier, vol. 75(C).
    16. Lang, Chunlin & Hu, Yang & Corbet, Shaen & Hou, Yang (Greg), 2024. "Tail risk connectedness in G7 stock markets: Understanding the impact of COVID-19 and related variants," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    17. Chatziantoniou, Ioannis & Gabauer, David & Perez de Gracia, Fernando, 2022. "Tail risk connectedness in the refined petroleum market: A first look at the impact of the COVID-19 pandemic," Energy Economics, Elsevier, vol. 111(C).
    18. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    19. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    20. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2022. "Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data," Energies, MDPI, vol. 15(22), pages 1-26, November.

    More about this item

    Keywords

    Stock markets; Tail risks; Connectedness; Gold-to-silver price ratio; Gold-to-platinum price ratio; Forecasting; Asymmetric loss;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.