[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/122408.html
   My bibliography  Save this paper

Optimization of the Credit Portfolio and Methodology for Evaluating a Public Support Policy: The Case of the Support Fund for Large Ivorian Enterprises (FSGE)

Author

Listed:
  • DAYORO, DONATIEN
Abstract
The article employs a logistic regression model to predict defaults and optimize credit portfolios for enterprises receiving support, showcasing a rigorous methodological approach. It relies on empirical data to ensure the relevance of its findings and utilizes the Evidence-Based Policy Making (EBPM) method, incorporating propensity score matching techniques to correct for selection biases, thereby ensuring accurate evaluations. Additionally, the work adheres to international standards set by the INTOSAI Guide 9020, enhancing its academic credibility. Ultimately, the proposed solutions contribute to both financial theory and public management practices, illustrating the author's ability to harmonize theoretical frameworks with practical applications.

Suggested Citation

  • Dayoro, Donatien, 2024. "Optimization of the Credit Portfolio and Methodology for Evaluating a Public Support Policy: The Case of the Support Fund for Large Ivorian Enterprises (FSGE)," MPRA Paper 122408, University Library of Munich, Germany, revised 2024.
  • Handle: RePEc:pra:mprapa:122408
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/122408/1/MPRA_paper_122408.docx
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/122408/2/MPRA_paper_122408.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussein A. Abdou & John Pointon, 2009. "Credit scoring and decision making in Egyptian public sector banks," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 5(4), pages 391-406, September.
    2. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    5. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    6. Haughwout, Andrew & Peach, Richard & Tracy, Joseph, 2008. "Juvenile delinquent mortgages: Bad credit or bad economy?," Journal of Urban Economics, Elsevier, vol. 64(2), pages 246-257, September.
    7. Hussein A. Abdou, 2009. "An evaluation of alternative scoring models in private banking," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 10(1), pages 38-53, January.
    8. Loretta J. Mester, 1997. "What's the point of credit scoring?," Business Review, Federal Reserve Bank of Philadelphia, issue Sep, pages 3-16.
    9. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    10. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    2. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    3. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    4. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    5. Kevin C.W. Chen & Chi†Wen Jevons Lee, 1993. "Financial Ratios and Corporate Endurance: A Case of the Oil and Gas Industry," Contemporary Accounting Research, John Wiley & Sons, vol. 9(2), pages 667-694, March.
    6. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    7. T.G. Saji, 2018. "Financial Distress and Stock Market Failures: Lessons from Indian Realty Sector," Vision, , vol. 22(1), pages 50-60, March.
    8. WILLIAM HOPWOOD & JAMES C. McKEOWN & JANE F. MUTCHLER, 1994. "A Reexamination of Auditor versus Model Accuracy within the Context of the Going†Concern Opinion Decision," Contemporary Accounting Research, John Wiley & Sons, vol. 10(2), pages 409-431, March.
    9. Ben Jabeur, Sami, 2017. "Bankruptcy prediction using Partial Least Squares Logistic Regression," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 197-202.
    10. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    11. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    12. Chien-Min Kang & Ming-Chieh Wang & Lin Lin, 2022. "Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions," IJFS, MDPI, vol. 10(2), pages 1-25, April.
    13. Niket Jindal & Leigh McAlister, 2015. "The Impacts of Advertising Assets and R&D Assets on Reducing Bankruptcy Risk," Marketing Science, INFORMS, vol. 34(4), pages 555-572, July.
    14. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    15. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    16. George Giannopoulos & Sophia Ali Sardar & Rebecca Salti & Nicos Sykianakis, 2022. "Analyzing Insolvency Prediction Models in the Period Before and After the Financial Crisis: A Case Study on the Example of US Firms," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 12(3), pages 23-45.
    17. Bhanu Pratap SINGH & Alok Kumar MISHRA, 2019. "Sensitivity of bankruptcy prediction models to the change in econometric methods," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(620), A), pages 71-86, Autumn.
    18. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    19. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    20. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.

    More about this item

    Keywords

    Evaluation of public policy INTOSAI standards Management of Covid-19 funds Credit risk Credit rating Logit econometric model;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • G2 - Financial Economics - - Financial Institutions and Services
    • G3 - Financial Economics - - Corporate Finance and Governance
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation
    • H63 - Public Economics - - National Budget, Deficit, and Debt - - - Debt; Debt Management; Sovereign Debt
    • P50 - Political Economy and Comparative Economic Systems - - Comparative Economic Systems - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:122408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.