[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/117488.html
   My bibliography  Save this paper

Temporal and design approaches and yield-weather relationships

Author

Listed:
  • Tappi, Marco
  • Carucci, Federica
  • Gatta, Giuseppe
  • Giuliani, Marcella Michela
  • Lamonaca, Emilia
  • Santeramo, Fabio Gaetano
Abstract
The climate changes and the weather events affect agricultural production and farmers’ income. Several strategies may help improving the resilience of farms to climate change, and particular mention should be done to the weather index-based crop insurance schemes, as they rely on the yield-weather relationship. A vast majority of studies investigate the limitation of the weather index insurance, due to the complex relationships linking weather events and yields and the difficulty to capture them with an index (i.e., the basis risk). The literature has not devoted sufficient attention to compare different specifications within the same statistical model in yield-weather estimation. Our study, conducted on durum wheat in Italy, shows how the identification (and design) of the phenological stages (i.e., temporal specifications) may help capturing or depicting the yield-weather relationships. The negative effects of the low temperatures, especially during the early stages of durum wheat, is remarkable. Our findings contribute to the debate on the design of triggers in weather indexes (e.g., for minimum temperatures), stimulating new research directions to assist stakeholders interested in planning agricultural risk management interventions.

Suggested Citation

  • Tappi, Marco & Carucci, Federica & Gatta, Giuseppe & Giuliani, Marcella Michela & Lamonaca, Emilia & Santeramo, Fabio Gaetano, 2023. "Temporal and design approaches and yield-weather relationships," MPRA Paper 117488, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:117488
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/117488/1/CLRM_manuscript_Tappi.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. G. Santeramo & B. K. Goodwin & F. Adinolfi & F. Capitanio, 2016. "Farmer Participation, Entry and Exit Decisions in the Italian Crop Insurance Programme," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 639-657, September.
    2. Ramsey, Austin Ford & Santeramo, Fabio Gaetano, 2017. "Crop Insurance in the European Union: Lessons and Caution from the United States," MPRA Paper 79164, University Library of Munich, Germany.
    3. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    4. Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
    5. Benjamin Collier & Jerry Skees & Barry Barnett, 2009. "Weather Index Insurance and Climate Change: Opportunities and Challenges in Lower Income Countries," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 34(3), pages 401-424, July.
    6. Colin Carter & Xiaomeng Cui & Dalia Ghanem & Pierre Mérel, 2018. "Identifying the Economic Impacts of Climate Change on Agriculture," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 361-380, October.
    7. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Wang, Hongqing & Hsieh, Y. Ping & Harwell, Mark A. & Huang, Wenrui, 2007. "Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions," Ecological Modelling, Elsevier, vol. 201(3), pages 429-439.
    9. Willemijn Vroege & Robert Finger, 2020. "Insuring Weather Risks in European Agriculture," EuroChoices, The Agricultural Economics Society, vol. 19(2), pages 54-62, August.
    10. Fabio Gaetano Santeramo, 2018. "Imperfect information and participation in insurance markets: evidence from Italy," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 78(2), pages 183-194, February.
    11. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    12. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    13. Leif Erec Heimfarth & Oliver Musshoff, 2011. "Weather index‐based insurances for farmers in the North China Plain," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(2), pages 218-239, August.
    14. Tappi, Marco & Nardone, Gianluca & Santeramo, Fabio Gaetano, 2022. "On the relationships among durum wheat yields and weather conditions: evidence from Apulia region, Southern Italy," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 11(2), July.
    15. Anghileri, Daniela & Bozzini, Veronica & Molnar, Peter & Jamali, Andrew A.J. & Sheffield, Justin, 2022. "Comparison of hydrological and vegetation remote sensing datasets as proxies for rainfed maize yield in Malawi," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Milton Boyd & Brock Porth & Lysa Porth & Daniel Turenne, 2019. "The Impact of Spatial Interpolation Techniques on Spatial Basis Risk for Weather Insurance: An Application to Forage Crops," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(3), pages 412-433, July.
    17. Belissa, Temesgen & Bulte, Erwin & Cecchi, Francesco & Gangopadhyay, Shubhashis & Lensink, Robert, 2019. "Liquidity constraints, informal institutions, and the adoption of weather insurance: A randomized controlled Trial in Ethiopia," Journal of Development Economics, Elsevier, vol. 140(C), pages 269-278.
    18. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    19. Janic Bucheli & Tobias Dalhaus & Robert Finger, 2021. "The optimal drought index for designing weather index insurance," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 573-597.
    20. Kellner, Ulla & Musshoff, Oliver, 2011. "Precipitation or water capacity indices? An analysis of the benefits of alternative underlyings for index insurance," Agricultural Systems, Elsevier, vol. 104(8), pages 645-653, October.
    21. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    22. Michael T. Norton & Calum Turvey & Daniel Osgood, 2012. "Quantifying spatial basis risk for weather index insurance," Journal of Risk Finance, Emerald Group Publishing, vol. 14(1), pages 20-34, December.
    23. Sarah Conradt & Robert Finger & Raushan Bokusheva, 2015. "Tailored to the extremes: Quantile regression for index-based insurance contract design," Agricultural Economics, International Association of Agricultural Economists, vol. 46(4), pages 537-547, July.
    24. Fabio G Santeramo, 2019. "I Learn, You Learn, We Gain Experience in Crop Insurance Markets," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(2), pages 284-304, June.
    25. Fabio G. Santeramo & A. Ford Ramsey, 2017. "Crop Insurance in the EU: Lessons and Caution from the US," EuroChoices, The Agricultural Economics Society, vol. 16(3), pages 34-39, December.
    26. Barry J. Barnett & Olivier Mahul, 2007. "Weather Index Insurance for Agriculture and Rural Areas in Lower-Income Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1241-1247.
    27. Calum G. Turvey, 2001. "Weather Derivatives for Specific Event Risks in Agriculture," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 23(2), pages 333-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tappi, Marco & Nardone, Gianluca & Santeramo, Fabio Gaetano, 2022. "On the relationships among durum wheat yields and weather conditions: evidence from Apulia region, Southern Italy," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 11(2), July.
    2. Ruggiero Rippo & Simone Cerroni, 2023. "Farmers' participation in the Income Stabilisation Tool: Evidence from the apple sector in Italy," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 273-294, February.
    3. Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
    4. Marco Rogna & Günter Schamel & Alex Weissensteiner, 2023. "Modelling the switch from hail insurance to antihail nets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 118-136, January.
    5. Fabio G., Santeramo & Ilaria, Russo & Emilia, Lamonaca, 2022. "Italian subsidised crop insurance: what the role of policy changes," MPRA Paper 115299, University Library of Munich, Germany.
    6. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
    7. Mengmeng Qiang & Manhong Shen & Guanjun Xia, 2023. "The effectiveness of weather index insurance in managing mariculture production risk," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 245-262, April.
    8. Fabio G Santeramo, 2019. "I Learn, You Learn, We Gain Experience in Crop Insurance Markets," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(2), pages 284-304, June.
    9. Nordmeyer, Eike Florenz & Danne, Michael & Musshoff, Oliver, 2023. "Can satellite-retrieved data increase farmers' willingness to insure against drought? – Insights from Germany," Agricultural Systems, Elsevier, vol. 211(C).
    10. Doms, Juliane, 2017. "Put, call or strangle? About the challenges in designing weather index insurances to hedge performance risk in agriculture," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 261990, German Association of Agricultural Economists (GEWISOLA).
    11. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    12. Jean Cordier & Fabio Santeramo, 2020. "Mutual Funds and the Income Stabilisation Tool in the EU: Retrospect and Prospects," EuroChoices, The Agricultural Economics Society, vol. 19(1), pages 53-58, April.
    13. Wienand Kölle & Andrea Martínez Salgueiro & Matthias Buchholz & Oliver Musshoff, 2021. "Can satellite‐based weather index insurance improve the hedging of yield risk of perennial non‐irrigated olive trees in Spain?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 66-93, January.
    14. Alessandro Banterle & Daniela Vandone, 2019. "Price volatility and risk management: The case of rice in the EU," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(2), pages 255-274.
    15. Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
    16. Antoine Leblois & Philippe Quirion, 2013. "Agricultural insurances based on meteorological indices: realizations, methods and research challenges," Post-Print hal-00656778, HAL.
    17. Cheng, Muxi & McCarl, Bruce A. & Fei, Chengcheng, 2021. "Climate Change Effects on the U.S. Hog production," 2021 Annual Meeting, August 1-3, Austin, Texas 313966, Agricultural and Applied Economics Association.
    18. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    19. Giampietri, Elisa & Yu, Xiaohua & Trestini, Samuele, 2020. "The role of trust and perceived barriers on farmer’s intention to adopt risk management tools," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 9(1), April.
    20. Mitchell Roznik & C. Brock Porth & Lysa Porth & Milton Boyd & Katerina Roznik, 2019. "Improving agricultural microinsurance by applying universal kriging and generalised additive models for interpolation of mean daily temperature," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 44(3), pages 446-480, July.

    More about this item

    Keywords

    Basis risk; Crop; Climate; Phenological stage; Insurance; Risk management;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:117488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.