[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/12324.html
   My bibliography  Save this paper

Why Has U.S. Inflation Become Harder to Forecast?

Author

Listed:
  • James H. Stock
  • Mark W. Watson
Abstract
Forecasts of the rate of price inflation play a central role in the formulation of monetary policy, and forecasting inflation is a key job for economists at the Federal Reserve Board. This paper examines whether this job has become harder and, to the extent that it has, what changes in the inflation process have made it so. The main finding is that the univariate inflation process is well described by an unobserved component trend-cycle model with stochastic volatility or, equivalently, an integrated moving average process with time-varying parameters; this model explains a variety of recent univariate inflation forecasting puzzles. It appears currently to be difficult for multivariate forecasts to improve on forecasts made using this time-varying univariate model.

Suggested Citation

  • James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:12324
    Note: EFG ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w12324.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    2. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    3. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    4. Maarten Dossche & Gerdie Everaert, 2005. "Measuring Inflation Persistence: A Structural Time Series Approach," Computing in Economics and Finance 2005 459, Society for Computational Economics.
    5. Flint Brayton & John M. Roberts & John C. Williams, 1999. "What's happened to the Phillips curve?," Finance and Economics Discussion Series 1999-49, Board of Governors of the Federal Reserve System (U.S.).
    6. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    7. Donald L. Kohn, 2005. "Modeling inflation: a policymaker's perspective : a speech to the International Research Forum on Monetary Policy Conference, Frankfurt am Main, Germany, May 20, 2005," Speech 102, Board of Governors of the Federal Reserve System (U.S.).
    8. Jonas D. M. Fisher & Chin Te Liu & Ruilin Zhou, 2002. "When can we forecast inflation?," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 26(Q I), pages 32-44.
    9. Mavroeidis, Sophocles, 2005. "Identification Issues in Forward-Looking Models Estimated by GMM, with an Application to the Phillips Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 421-448, June.
    10. Barsky, Robert B., 1987. "The Fisher hypothesis and the forecastability and persistence of inflation," Journal of Monetary Economics, Elsevier, vol. 19(1), pages 3-24, January.
    11. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    12. Pivetta, Frederic & Reis, Ricardo, 2007. "The persistence of inflation in the United States," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1326-1358, April.
    13. Nelson, Charles R & Schwert, G William, 1977. "Short-Term Interest Rates as Predictors of Inflation: On Testing the Hypothesis That the Real Rate of Interest is Constant," American Economic Review, American Economic Association, vol. 67(3), pages 478-486, June.
    14. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    15. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    16. Mr. Daniel Leigh, 2005. "Estimating the Implicit Inflation Target: An Application to U.S. Monetary Policy," IMF Working Papers 2005/077, International Monetary Fund.
    17. Harvey, Andrew C. & Trimbur, Thomas M. & Van Dijk, Herman K., 2007. "Trends and cycles in economic time series: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 618-649, October.
    18. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    19. Arturo Estrella, 2005. "Why Does the Yield Curve Predict Output and Inflation?," Economic Journal, Royal Economic Society, vol. 115(505), pages 722-744, July.
    20. Harvey, A C, 1985. "Trends and Cycles in Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 216-227, June.
    21. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    2. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    3. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    4. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    5. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
    6. Alonso Gomez & John M Maheu & Alex Maynard, 2008. "Improving Forecasts of Inflation using the Term Structure of Interest Rates," Working Papers tecipa-319, University of Toronto, Department of Economics.
    7. Kabukçuoğlu, Ayşe & Martínez-García, Enrique, 2018. "Inflation as a global phenomenon—Some implications for inflation modeling and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 46-73.
    8. Mazumder, Sandeep, 2011. "Cost-based Phillips Curve forecasts of inflation," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 553-567.
    9. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    10. Lillian Kamal, 2014. "Do GAP Models Still have a Role to Play in Forecasting Inflation?," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 8(3), pages 1-12.
    11. Todd E. Clark & Michael W. McCracken, 2006. "Forecasting of small macroeconomic VARs in the presence of instabilities," Research Working Paper RWP 06-09, Federal Reserve Bank of Kansas City.
    12. Heaton, Chris, 2015. "Testing for multiple-period predictability between serially dependent time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 587-597.
    13. James M. Nason & Gregor W. Smith, 2008. "The New Keynesian Phillips curve : lessons from single-equation econometric estimation," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 94(Fall), pages 361-395.
    14. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    15. Kevin Lansing, 2009. "Time Varying U.S. Inflation Dynamics and the New Keynesian Phillips Curve," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 304-326, April.
    16. Tule, Moses K. & Salisu, Afees A. & Chiemeke, Charles C., 2019. "Can agricultural commodity prices predict Nigeria's inflation?," Journal of Commodity Markets, Elsevier, vol. 16(C).
    17. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    18. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    19. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    20. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:12324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.