[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2006-2.html
   My bibliography  Save this paper

A Complete VARMA Modelling Methodology Based on Scalar Components

Author

Listed:
  • George Athanasopoulos
  • Farshid Vahid
Abstract
This paper proposes an extension to scalar component methodology for the identification and estimation of VARMA models. The complete methodology determines the exact positions of all free parameters in any VARMA model with a predetermined embedded scalar component structure. This leads to an exactly identified system of equations that is estimated using full information maximum likelihood.

Suggested Citation

  • George Athanasopoulos & Farshid Vahid, 2006. "A Complete VARMA Modelling Methodology Based on Scalar Components," Monash Econometrics and Business Statistics Working Papers 2/06, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2006-2
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2006/wp2-06.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Vahid, Farshid & Engle, Robert F., 1997. "Codependent cycles," Journal of Econometrics, Elsevier, vol. 80(2), pages 199-221, October.
    3. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    4. Anderson, Heather M. & Vahid, Farshid, 1998. "Testing multiple equation systems for common nonlinear components," Journal of Econometrics, Elsevier, vol. 84(1), pages 1-36, May.
    5. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    6. Athanasopoulos, George & Vahid, Farshid, 2008. "VARMA versus VAR for Macroeconomic Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 237-252, April.
    7. Howard Grubb, 1992. "A Multivariate Time Series Analysis of Some Flour Price Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 95-107, March.
    8. Clements, M.P. & Hendry, D., 1992. "On the Limitations of Comparing Mean Square Forecast Errors," Economics Series Working Papers 99138, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Wenying & Kam, Timothy & Vahid, Farshid, 2017. "On weak identification in structural VARMA models," Economics Letters, Elsevier, vol. 156(C), pages 1-6.
    2. Raghavan, Mala, 2020. "An analysis of the global oil market using SVARMA models," Energy Economics, Elsevier, vol. 86(C).
    3. Athanasopoulos, George & Vahid, Farshid, 2008. "VARMA versus VAR for Macroeconomic Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 237-252, April.
    4. Mélard, Guy, 2022. "An indirect proof for the asymptotic properties of VARMA model estimators," Econometrics and Statistics, Elsevier, vol. 21(C), pages 96-111.
    5. Yao, Wenying & Kam, Timothy & Vahid, Farshid, 2014. "VAR(MA), what is it good for? more bad news for reduced-form estimation and inference," Working Papers 2014-14, University of Tasmania, Tasmanian School of Business and Economics.
    6. Mala Raghavan & George Athanasopoulos & Param Silvapulle, 2016. "Canadian monetary policy analysis using a structural VARMA model," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 49(1), pages 347-373, February.
    7. George Athanasopoulos & D. Poskitt & Farshid Vahid, 2012. "Two Canonical VARMA Forms: Scalar Component Models Vis-à-Vis the Echelon Form," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 60-83.
    8. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    9. Raghavan, Mala & Athanasopoulos, George, 2019. "Analysis of shock transmissions to a small open emerging economy using a SVARMA model," Economic Modelling, Elsevier, vol. 77(C), pages 187-203.
    10. BRATU SIMIONESCU, Mihaela, 2012. "Two Quantitative Forecasting Methods For Macroeconomic Indicators In Czech Republic," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 3(1), pages 71-87.
    11. Mihaela Bratu, 2011. "The Assessement Of Uncertainty In Predictions Determined By The Variables Aggregation," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(13), pages 1-31.
    12. Guy Melard, 2020. "An Indirect Proof for the Asymptotic Properties of VARMA Model Estimators," Working Papers ECARES 2020-10, ULB -- Universite Libre de Bruxelles.
    13. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    14. Poskitt, D.S., 2016. "Vector autoregressive moving average identification for macroeconomic modeling: A new methodology," Journal of Econometrics, Elsevier, vol. 192(2), pages 468-484.
    15. Jean-Marie Dufour & Tarek Jouini, 2011. "Asymptotic Distributions for Some Quasi-Efficient Estimators in Echelon VARMA Models," CIRANO Working Papers 2011s-25, CIRANO.
    16. Bernd Funovits, 2019. "Identification and Estimation of SVARMA models with Independent and Non-Gaussian Inputs," Papers 1910.04087, arXiv.org.
    17. Pestano-Gabino, Celina & González-Concepción, Concepción & Gil-Fariña, María Candelaria, 2010. "An algebraic analysis using Matrix Padé Approximation to improve the choice of certain parameter in Scalar Component Models," DES - Working Papers. Statistics and Econometrics. WS ws100803, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Mala Raghavan & George Athanasopoulos & Param Silvapulle, 2009. "VARMA models for Malaysian Monetary Policy Analysis," Monash Econometrics and Business Statistics Working Papers 6/09, Monash University, Department of Econometrics and Business Statistics.
    19. Athanasopouolos, George & Poskitt, Don & Vahid, Farshid & Yao, Wenying, 2014. "Forecasting with EC-VARMA models," Working Papers 2014-07, University of Tasmania, Tasmanian School of Business and Economics, revised 22 Feb 2014.
    20. Funovits, Bernd, 2024. "Identifiability and estimation of possibly non-invertible SVARMA Models: The normalised canonical WHF parametrisation," Journal of Econometrics, Elsevier, vol. 241(2).
    21. Mihaela BRATU, 2012. "Econometric Models For Determing The Exchange Rate," Romanian Statistical Review, Romanian Statistical Review, vol. 60(4), pages 49-64, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    2. George Athanasopoulos & D. Poskitt & Farshid Vahid, 2012. "Two Canonical VARMA Forms: Scalar Component Models Vis-à-Vis the Echelon Form," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 60-83.
    3. Centoni, Marco & Cubadda, Gianluca & Hecq, Alain, 2007. "Common shocks, common dynamics, and the international business cycle," Economic Modelling, Elsevier, vol. 24(1), pages 149-166, January.
    4. Engle, Robert F. & Marcucci, Juri, 2006. "A long-run Pure Variance Common Features model for the common volatilities of the Dow Jones," Journal of Econometrics, Elsevier, vol. 132(1), pages 7-42, May.
    5. Alain Hecq & Franz Palm & Jean-Pierre Urbain, 2000. "Testing for Common Cyclical Features in Nonstationary Panel Data Models," CESifo Working Paper Series 248, CESifo.
    6. Neri, Marcelo Côrtes & Soares, Wagner Lopes, 2008. "Turismo sustentável e alivio a pobreza: avaliação de impacto," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 689, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    7. Gianluca Cubadda & Alain Hecq & Sean Telg, 2019. "Detecting Co‐Movements in Non‐Causal Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 697-715, June.
    8. Issler, Joao Victor & Vahid, Farshid, 2006. "The missing link: using the NBER recession indicator to construct coincident and leading indices of economic activity," Journal of Econometrics, Elsevier, vol. 132(1), pages 281-303, May.
    9. Hecq, A.W. & Issler, J.V., 2012. "A common-feature approach for testing present-value restrictions with financial data," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    10. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    11. Marco Centoni & Gianluca Cubadda, 2011. "Modelling comovements of economic time series: a selective survey," Statistica, Department of Statistics, University of Bologna, vol. 71(2), pages 267-294.
    12. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    13. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    14. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    15. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    16. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    17. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    18. Fok, D. & van Dijk, D.J.C. & Franses, Ph.H.B.F., 2003. "A multi-level panel smooth transition autoregression for US sectoral production," Econometric Institute Research Papers EI 2003-43, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Christian Gourieroux & Joann Jasiak, 2011. "Nonlinear Persistence and Copersistence," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Nonlinear Financial Econometrics: Markov Switching Models, Persistence and Nonlinear Cointegration, chapter 4, pages 77-103, Palgrave Macmillan.
    20. Fabio Araujo & Joao Victor Issler, 2005. "Estimating the Stochastic Discount Factor without a Utility Function," Computing in Economics and Finance 2005 202, Society for Computational Economics.

    More about this item

    Keywords

    Identification; Multivariate time series; Scalar components; VARMA models.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2006-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.