[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/liv/livedp/202310.html
   My bibliography  Save this paper

Portfolio Selection Under Non-Gaussianity And Systemic Risk: A Machine Learning Based Forecasting Approach

Author

Listed:
  • Weidong Lin
  • Abderrahim Taamouti
Abstract
The Sharpe-ratio-maximizing portfolio becomes questionable under non-Gaussian returns, and it rules out, by construction, systemic risk, which can negatively a§ect its out-of-sample performance. In the present work, we develop a new performance ratio that simultaneously addresses these two problems when building optimal portfolios. To robustify the portfolio optimization and better represent extreme market scenarios, we simulate a large number of returns via a Monte Carlo method. This is done by Örst obtaining probabilistic return forecasts through a distributional machine learning approach in a big data setting, and then combining them with a Ötted copula to generate return scenarios. Based on a large-scale comparative analysis conducted on the US market, the backtesting results demonstrate the superiority of our proposed portfolio selection approach against several popular benchmark strategies in terms of both proÖtability and minimizing systemic risk. This outperformance is robust to the inclusion of transaction costs.

Suggested Citation

  • Weidong Lin & Abderrahim Taamouti, 2023. "Portfolio Selection Under Non-Gaussianity And Systemic Risk: A Machine Learning Based Forecasting Approach," Working Papers 202310, University of Liverpool, Department of Economics.
  • Handle: RePEc:liv:livedp:202310
    as

    Download full text from publisher

    File URL: https://www.liverpool.ac.uk/media/livacuk/schoolofmanagement/docs/ECON,WP,202310,full.pdf
    File Function: First version, 2023
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    2. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    3. Farinelli, Simone & Tibiletti, Luisa, 2008. "Sharpe thinking in asset ranking with one-sided measures," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1542-1547, March.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    6. Elena-Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012. "Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests," Finance, Presses universitaires de Grenoble, vol. 33(1), pages 79-112.
    7. Bouaddi, Mohammed & Taamouti, Abderrahim, 2013. "Portfolio selection in a data-rich environment," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2943-2962.
    8. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    9. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    10. Svetlozar Rachev & Sergio Ortobelli & Stoyan Stoyanov & Frank J. Fabozzi & Almira Biglova, 2008. "Desirable Properties Of An Ideal Risk Measure In Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 19-54.
    11. Sergio Ortobelli & Svetlozar T. Rachev & Stoyan Stoyanov & Frank J. Fabozzi & Almira Biglova, 2005. "The Proper Use Of Risk Measures In Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(08), pages 1107-1133.
    12. Weidong Lin & Abderrahim Taamouti, 2023. "Machine Learning Based Portfolio Selection Under Systemic Risk," Working Papers 202311, University of Liverpool, Department of Economics.
    13. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    14. Almira Biglova & Sergio Ortobelli & Frank J Fabozzi, 2014. "Portfolio selection in the presence of systemic risk," Journal of Asset Management, Palgrave Macmillan, vol. 15(5), pages 285-299, October.
    15. Guanhao Feng & Jingyu He & Nicholas G. Polson, 2018. "Deep Learning for Predicting Asset Returns," Papers 1804.09314, arXiv.org, revised Apr 2018.
    16. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    17. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    18. Xiaojun Song & Abderrahim Taamouti, 2021. "Measuring Granger Causality in Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 937-952, October.
    19. Masaya Abe & Hideki Nakayama, 2018. "Deep Learning for Forecasting Stock Returns in the Cross-Section," Papers 1801.01777, arXiv.org, revised Jun 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
    2. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    3. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    4. Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," International Journal of Forecasting, Elsevier, vol. 38(1), pages 97-116.
    5. Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
    6. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    7. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    8. Ilias Chronopoulos & Aristeidis Raftapostolos & George Kapetanios, 2024. "Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 636-669.
    9. Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2023. "Investor Confidence and Forecastability of US Stock Market Realized Volatility: Evidence from Machine Learning," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 24(1), pages 111-122, January.
    10. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
    11. Georg Keilbar & Weining Wang, 2022. "Modelling systemic risk using neural network quantile regression," Empirical Economics, Springer, vol. 62(1), pages 93-118, January.
    12. Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
    13. Smith, Simon C. & Timmermann, Allan, 2022. "Have risk premia vanished?," Journal of Financial Economics, Elsevier, vol. 145(2), pages 553-576.
    14. Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Predicting the distributions of stock returns around the globe in the era of big data and learning," Papers 2408.07497, arXiv.org.
    15. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    17. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Nov 2024.
    18. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    19. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    20. Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).

    More about this item

    Keywords

    Portfolio optimization; probability forecasting; quantile regression neural network; extreme scenarios; big data.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:liv:livedp:202310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rachel Slater (email available below). General contact details of provider: https://edirc.repec.org/data/mslivuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.