(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ler/wpaper/26049.html
   My bibliography  Save this paper

Optimal timing of CCS policies with heterogeneous energy consumption sectors

Author

Listed:
  • Amigues, Jean-Pierre
  • Lafforgue, Gilles
  • Moreaux, Michel
Abstract
Using the Chakravorty et al. (J Econ Dyn Control 30:2875–2904, 2006 ) ceiling model, we characterize the optimal consumption paths of three energy resources: dirty oil, which is non-renewable and carbon emitting; clean oil, which is also non-renewable but carbon-free thanks to an abatement technology, and solar energy, which is renewable and carbon-free. The resulting energy-mix can supply the energy needs of two sectors. These sectors differ in the additional abatement cost they have to pay for consuming clean rather than dirty oil, as Sector 1 (industry) can abate its emissions at a lower cost than Sector 2 (transport). We show that it is optimal to begin by fully capturing Sector 1’s emissions before the ceiling is reached. Also, there may be optimal paths along which the capture devices of both sectors must be activated. In this case, Sector’s 1 emissions are fully abated first, before Sector 2 abates partially. Finally, we discuss the way heterogeneity of abatement costs causes sectoral energy price paths to differ. Copyright Springer Science+Business Media Dordrecht 2014
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2012. "Optimal timing of CCS policies with heterogeneous energy consumption sectors," LERNA Working Papers 12.13.370, LERNA, University of Toulouse.
  • Handle: RePEc:ler:wpaper:26049
    as

    Download full text from publisher

    File URL: http://www2.toulouse.inra.fr/lerna/travaux/cahiers2012/12.13.370.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean-Pierre Amigues & Michel Moreaux & Katheline Schubert, 2011. "Optimal Use of a Polluting Non-Renewable Resource Generating both Manageable and Catastrophic Damages," Annals of Economics and Statistics, GENES, issue 103-104, pages 107-141.
    2. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2012. "Optimal Timing of Carbon Capture Policies Under Alternative CCS Cost Functions," TSE Working Papers 12-318, Toulouse School of Economics (TSE).
    3. repec:adr:anecst:y:2011:i:103-104:p:07 is not listed on IDEAS
    4. Renaud Coulomb & Fanny Henriet, 2010. "Carbon price and optimal extraction of a polluting fossil fuel with restricted carbon capture," PSE Working Papers halshs-00564852, HAL.
    5. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    6. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    7. Ayong Le Kama, Alain & Fodha, Mouez & Lafforgue, Gilles, 2009. "Optimal Carbon Capture and Storage Policies," TSE Working Papers 09-095, Toulouse School of Economics (TSE).
    8. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2011. "Would hotelling kill the electric car?," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 281-296, May.
    9. Alain Ayong Le Kama & Mouez Fodha & LAFFORGUE Gilles, 2009. "Optimal Carbon Capture and Storage policies," LERNA Working Papers 09.24.300, LERNA, University of Toulouse.
    10. Toman, Michael A. & Withagen, Cees, 2000. "Accumulative pollution, "clean technology," and policy design," Resource and Energy Economics, Elsevier, vol. 22(4), pages 367-384, October.
    11. Islegen Ozge & Reichelstein Stefan J, 2009. "The Economics of Carbon Capture," The Economists' Voice, De Gruyter, vol. 6(12), pages 1-5, December.
    12. Olli Tahvonen, 1997. "Fossil Fuels, Stock Externalities, and Backstop Technology," Canadian Journal of Economics, Canadian Economics Association, vol. 30(4), pages 855-874, November.
    13. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    14. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2006. "Optimal Sequestration Policy with a Ceiling on the Stock of Carbon in the Atmosphere," IDEI Working Papers 401, Institut d'Économie Industrielle (IDEI), Toulouse.
    15. Herzog, Howard J., 2011. "Scaling up carbon dioxide capture and storage: From megatons to gigatons," Energy Economics, Elsevier, vol. 33(4), pages 597-604, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    2. Alain Ayong Le Kama & Aude Pommeret, 2017. "Supplementing Domestic Mitigation and Adaptation with Emissions Reduction Abroad to Face Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 875-891, December.
    3. Moreaux, Michel & Withagen, Cees, 2015. "Optimal abatement of carbon emission flows," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 55-70.
    4. Bouwe R. Dijkstra & Maria J. Gil‐Moltó, 2018. "Is emission intensity or output U‐shaped in the strictness of environmental policy?," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 20(2), pages 177-201, April.
    5. Waxman, Andrew R. & Corcoran, Sean & Robison, Andrew & Leibowicz, Benjamin D. & Olmstead, Sheila, 2021. "Leveraging scale economies and policy incentives: Carbon capture, utilization & storage in Gulf clusters," Energy Policy, Elsevier, vol. 156(C).
    6. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    7. Thomas Eichner & Gilbert Kollenbach & Mark Schopf, 2023. "Demand- Versus Supply-Side Climate Policies with a Carbon Dioxide Ceiling," The Economic Journal, Royal Economic Society, vol. 133(652), pages 1371-1406.
    8. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of Carbon Capture and Storage Policies Under Learning-by-doing," IDEI Working Papers 824, Institut d'Économie Industrielle (IDEI), Toulouse, revised May 2014.
    9. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of CCS Policies under Decreasing Returns to Scale," TSE Working Papers 14-529, Toulouse School of Economics (TSE).
    10. Kollenbach, Gilbert, 2015. "Abatement, R&D and growth with a pollution ceiling," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of Carbon Capture and Storage Policies Under Learning-by-doing," IDEI Working Papers 824, Institut d'Économie Industrielle (IDEI), Toulouse, revised May 2014.
    2. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2012. "Optimal Timing of Carbon Capture Policies Under Alternative CCS Cost Functions," TSE Working Papers 12-318, Toulouse School of Economics (TSE).
    3. Moreaux, Michel & Withagen, Cees, 2015. "Optimal abatement of carbon emission flows," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 55-70.
    4. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2011. "Optimal CCS and air capture from heterogeneous energy consuming sectors," LERNA Working Papers 11.16.350, LERNA, University of Toulouse.
    5. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of CCS Policies under Decreasing Returns to Scale," TSE Working Papers 14-529, Toulouse School of Economics (TSE).
    6. Moreaux, Michel & Withagen, Cees, 2013. "Climate Change and Carbon Capture and Storage," TSE Working Papers 13-393, Toulouse School of Economics (TSE).
    7. Kollenbach, Gilbert, 2015. "Abatement, R&D and growth with a pollution ceiling," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 1-16.
    8. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2016. "Optimal timing of carbon capture policies under learning-by-doing," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 20-37.
    9. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
    10. Amigues, Jean-Pierre & Moreaux, Michel, 2013. "The atmospheric carbon resilience problem: A theoretical analysis," Resource and Energy Economics, Elsevier, vol. 35(4), pages 618-636.
    11. Amigues, Jean-Pierre & Chakravorty, Ujjayant & Lafforgue, Gilles & Moreaux, Michel, 2012. "Renewable Portfolio Standards and implicit tax-subsidy schemes: Structural differences induced by quantity and proportional mandates," IDEI Working Papers 698, Institut d'Économie Industrielle (IDEI), Toulouse.
    12. Jean-Pierre Amigues & Michel Moreaux & Katheline Schubert, 2011. "Optimal Use of a Polluting Non-Renewable Resource Generating both Manageable and Catastrophic Damages," Annals of Economics and Statistics, GENES, issue 103-104, pages 107-141.
    13. Chakravorty, Ujjayant & Magné, Bertrand & Moreaux, Michel, 2008. "A dynamic model of food and clean energy," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1181-1203, April.
    14. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    15. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    16. Prieur, Fabien & Tidball, Mabel & Withagen, Cees, 2013. "Optimal emission-extraction policy in a world of scarcity and irreversibility," Resource and Energy Economics, Elsevier, vol. 35(4), pages 637-658.
    17. Amigues, Jean-Pierre & Moreaux, Michel, 2016. "Pollution Abatement v.s. Energy Efficiency Improvements," TSE Working Papers 16-626, Toulouse School of Economics (TSE).
    18. Amigues, Jean-Pierre & Moreaux, Michel, 2019. "Energy Conversion Rate Improvements, Pollution Abatement Efforts and Energy Mix: The Transition toward the Green Economy under a Pollution Stock Constraint," TSE Working Papers 19-994, Toulouse School of Economics (TSE).
    19. Jean Pierre Amigues & Gilles Lafforgue & Michel Moreaux, 2010. "Optimal capture and sequestration from the carbon emission flow and from the atmospheric carbon stock with heterogeneous energy consuming sectors," LERNA Working Papers 10.05.311, LERNA, University of Toulouse.
    20. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.

    More about this item

    JEL classification:

    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ler:wpaper:26049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxime MARTY (email available below). General contact details of provider: https://edirc.repec.org/data/lrtlsfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.