[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/lmu/muenec/20687.html
   My bibliography  Save this paper

Penalized Splines as Frequency Selective Filters - Reducing the Excess Variability at the Margins

Author

Listed:
  • Blöchl, Andreas
Abstract
Penalized splines have become a popular tool to model the trend component in economic time series. The outcome of the spline predominantly depends on the choice of a penalization parameter that controls the smoothness of the trend. This paper derives the penalization of splines by frequency domain aspects and points out their link to rational square wave filters. As a novel contribution this paper focuses on the so called excess variability at the margins that describes the undesired increasing variability of the trend estimation to the ends of the series. It will be shown that the too high volatility at the margins can be reduced considerably by a time varying penalization, which yields more reliable estimations for the most recent periods.

Suggested Citation

  • Blöchl, Andreas, 2014. "Penalized Splines as Frequency Selective Filters - Reducing the Excess Variability at the Margins," Discussion Papers in Economics 20687, University of Munich, Department of Economics.
  • Handle: RePEc:lmu:muenec:20687
    as

    Download full text from publisher

    File URL: https://epub.ub.uni-muenchen.de/20687/1/Paper_Bloechl.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    2. Danthine, Jean-Pierre & Girardin, Michel, 1989. "Business cycles in Switzerland : A comparative study," European Economic Review, Elsevier, vol. 33(1), pages 31-50, January.
    3. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    4. Flaig Gebhard, 2015. "Why We Should Use High Values for the Smoothing Parameter of the Hodrick-Prescott Filter," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(6), pages 518-538, December.
    5. Yuedong Wang, 1998. "Mixed effects smoothing spline analysis of variance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 159-174.
    6. Schlicht, Ekkehart, 2004. "Estimating the Smoothing Parameter in the So-Called Hodrick-Prescott Filter," IZA Discussion Papers 1054, Institute of Labor Economics (IZA).
    7. Bennett T. McCallum, 2000. "Alternative monetary policy rules : a comparison with historical settings for the United States, the United Kingdom, and Japan," Economic Quarterly, Federal Reserve Bank of Richmond, issue Win, pages 49-79.
    8. Proietti, Tommaso, 2007. "Signal extraction and filtering by linear semiparametric methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 935-958, October.
    9. Pollock, D. S. G., 2003. "Improved frequency selective filters," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 279-297, March.
    10. Pollock, D. S. G., 2000. "Trend estimation and de-trending via rational square-wave filters," Journal of Econometrics, Elsevier, vol. 99(2), pages 317-334, December.
    11. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    12. Tommaso Proietti, 2005. "Forecasting and signal extraction with misspecified models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 539-556.
    13. McElroy, Tucker, 2008. "Matrix Formulas For Nonstationary Arima Signal Extraction," Econometric Theory, Cambridge University Press, vol. 24(4), pages 988-1009, August.
    14. Dagum, Estela Bee & Giannerini, Simone, 2006. "A critical investigation on detrending procedures for non-linear processes," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 175-191, March.
    15. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    16. Kauermann Goeran & Krivobokova Tatyana & Semmler Willi, 2011. "Filtering Time Series with Penalized Splines," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-28, March.
    17. Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bloechl, Andreas, 2014. "Penalized Splines, Mixed Models and the Wiener-Kolmogorov Filter," Discussion Papers in Economics 21406, University of Munich, Department of Economics.
    2. Göran Kauermann & Timo Teuber & Peter Flaschel, 2012. "Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression," Computational Economics, Springer;Society for Computational Economics, vol. 39(4), pages 409-427, April.
    3. Bloechl, Andreas, 2014. "Reducing the Excess Variability of the Hodrick-Prescott Filter by Flexible Penalization," Discussion Papers in Economics 17940, University of Munich, Department of Economics.
    4. Blöchl, Andreas, 2014. "Trend Estimation with Penalized Splines as Mixed Models for Series with Structural Breaks," Discussion Papers in Economics 18446, University of Munich, Department of Economics.
    5. Kauermann Goeran & Krivobokova Tatyana & Semmler Willi, 2011. "Filtering Time Series with Penalized Splines," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-28, March.
    6. Anusha, "undated". "Evaluating reliability of some symmetric and asymmetric univariate filters," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2015-030, Indira Gandhi Institute of Development Research, Mumbai, India.
    7. Proietti, Tommaso, 2007. "Signal extraction and filtering by linear semiparametric methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 935-958, October.
    8. Lauren N. Berry & Nathaniel E. Helwig, 2021. "Cross-Validation, Information Theory, or Maximum Likelihood? A Comparison of Tuning Methods for Penalized Splines," Stats, MDPI, vol. 4(3), pages 1-24, September.
    9. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Dimitrios Thomakos, 2008. "Optimal Linear Filtering, Smoothing and Trend Extraction for Processes with Unit Roots and Cointegration," Working Papers 0024, University of Peloponnese, Department of Economics.
    11. Pollock, D.S.G., 2006. "Econometric methods of signal extraction," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2268-2292, May.
    12. Tommaso Proietti & Alessandra Luati, 2008. "Real Time Estimation in Local Polynomial Regression, with Application to Trend-Cycle Analysis," CEIS Research Paper 112, Tor Vergata University, CEIS, revised 14 Jul 2008.
    13. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    14. Jaroslaw Harezlak & Louise M. Ryan & Jay N. Giedd & Nicholas Lange, 2005. "Individual and Population Penalized Regression Splines for Accelerated Longitudinal Designs," Biometrics, The International Biometric Society, vol. 61(4), pages 1037-1048, December.
    15. Luca Benati, 2001. "Band-pass filtering, cointegration, and business cycle analysis," Bank of England working papers 142, Bank of England.
    16. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    17. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    18. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    19. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.
    20. Kaiser, Regina & Maravall, Agustin, 2005. "Combining filter design with model-based filtering (with an application to business-cycle estimation)," International Journal of Forecasting, Elsevier, vol. 21(4), pages 691-710.

    More about this item

    Keywords

    excess variability; penalized splines; spectral analysis; time varying penalization; trends;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lmu:muenec:20687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tamilla Benkelberg (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.