[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/644.html
   My bibliography  Save this paper

Martingale unobserved component models

Author

Listed:
  • Neil Shephard
Abstract
I discuss models which allow the local level model, which rationalised exponentially weighted moving averages, to have a time-varying signal/noise ratio. I call thisa martingale component model. This makes the rate of discounting of data local. I show how to handle such models effectively using an auxiliary particle filter which deploys M Kalman filters run in parallel competing against one another. Here one thinks of M as being 1,000 or more. The model is applied to inflation forecasting. The model generalises to unobserved component models where Gaussian shocks are replaced by martingale difference sequences.

Suggested Citation

  • Neil Shephard, 2013. "Martingale unobserved component models," Economics Series Working Papers 644, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:644
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:fde54fde-b8ea-4b63-b894-9bc4503bb8ac
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Harvey & Siem Jan Koopman, 2000. "Signal extraction and the formulation of unobserved components models," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 84-107.
    2. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana & Juan F. Rubio-Ramirez & Martin Uribe, 2011. "Risk Matters: The Real Effects of Volatility Shocks," American Economic Review, American Economic Association, vol. 101(6), pages 2530-2561, October.
    3. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    6. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    7. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    8. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    2. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    3. Hernández, Juan R., 2020. "Covered Interest Parity: A Stochastic Volatility Approach to Estimate the Neutral Band," MPRA Paper 100744, University Library of Munich, Germany.
    4. Timothy Cogley & Thomas J. Sargent, 2014. "Measuring Price-Level Uncertainty and Instability in the U.S., 1850-2012," Working Papers 2014-33, Economic Research Institute, Bank of Korea.
    5. Frank Schorfheide & Dongho Song & Amir Yaron, 2018. "Identifying Long‐Run Risks: A Bayesian Mixed‐Frequency Approach," Econometrica, Econometric Society, vol. 86(2), pages 617-654, March.
    6. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    7. Cogley, Timothy & Sargent, Thomas J. & Surico, Paolo, 2015. "Price-level uncertainty and instability in the United Kingdom," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siem Jan Koopman & Marcel Scharth, 2012. "The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
    2. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    3. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    4. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    5. Borus Jungbacker & Siem Jan Koopman, 2006. "Model-Based Measurement of Actual Volatility in High-Frequency Data," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 183-210, Emerald Group Publishing Limited.
    6. Michel Beine & Charles S. Bos & Sébastien Laurent, 2007. "The Impact of Central Bank FX Interventions on Currency Components," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 154-183.
    7. Neil Shephard & Arnaud Doucet, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Series Working Papers 606, University of Oxford, Department of Economics.
    8. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.

    More about this item

    Keywords

    Auxiliary particle filter; EM algorithm; EWMA; forecasting; Kalman filter; likelihood; martingale unobserved component model; particle filter; stochastic volatility;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.