[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ise/remwps/wp02232022.html
   My bibliography  Save this paper

Long-range connections and mixed diffusion in fractional networks

Author

Listed:
  • R. Vilela Mendes
  • Tanya Araújo
Abstract
Networks with long-range connections, obeying a distance-dependent power law of sufficiently small exponent, display superdiffusion, L´evy flights and robustness properties very different from the scale-free networks. It has been proposed that these networks, found both in society and in biology, be classified as a new structure, the fractional networks. Particular important examples are the social networks and the modular hierarchical brain networks where both short- and long-range connections are present. The anomalous superdiffusive and the mixed diffusion behavior of these networks is studied here as well as its relation to the nature and density of the long-range connections.

Suggested Citation

  • R. Vilela Mendes & Tanya Araújo, 2022. "Long-range connections and mixed diffusion in fractional networks," Working Papers REM 2022/0223, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  • Handle: RePEc:ise:remwps:wp02232022
    as

    Download full text from publisher

    File URL: https://rem.rc.iseg.ulisboa.pt/wps/pdf/REM_WP_0223_2022.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matsuzawa, Ryo & Tanimoto, Jun & Fukuda, Eriko, 2017. "Properties of a new small-world network with spatially biased random shortcuts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 408-415.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Tatsukawa, Yuichi & Arefin, Md. Rajib & Utsumi, Shinobu & Kuga, Kazuki & Tanimoto, Jun, 2022. "Stochasticity of disease spreading derived from the microscopic simulation approach for various physical contact networks," Applied Mathematics and Computation, Elsevier, vol. 431(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ise:remwps:wp02232022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sandra Araújo (email available below). General contact details of provider: https://rem.rc.iseg.ulisboa.pt/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.