[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2018-180.html
   My bibliography  Save this paper

The Term Structure of Growth-at-Risk

Author

Listed:
  • Mr. Tobias Adrian
  • Federico Grinberg
  • Nellie Liang
  • Sheheryar Malik
Abstract
Using panel quantile regressions for 11 advanced and 10 emerging market economies, we show that the conditional distribution of GDP growth depends on financial conditions, with growth-at-risk (GaR)—defined as growth at the lower 5th percentile—more responsive than the median or upper percentiles. In addition, the term structure of GaR features an intertemporal tradeoff: GaR is higher in the short run; but lower in the medium run when initial financial conditions are loose relative to typical levels, and the tradeoff is amplified by a credit boom. This shift in the growth distribution generally is not incorporated when solving dynamic stochastic general equilibrium models with macrofinancial linkages, which suggests downside risks to GDP growth are systematically underestimated.

Suggested Citation

  • Mr. Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik, 2018. "The Term Structure of Growth-at-Risk," IMF Working Papers 2018/180, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2018/180
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=46150
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    2. Zhiguo He & Arvind Krishnamurthy, 2019. "A Macroeconomic Framework for Quantifying Systemic Risk," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(4), pages 1-37, October.
    3. Atif Mian & Amir Sufi & Emil Verner, 2017. "Household Debt and Business Cycles Worldwide," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1755-1817.
    4. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    5. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    6. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393, Elsevier.
    7. Zhiguo He & Arvind Krishnamurthy, 2013. "Intermediary Asset Pricing," American Economic Review, American Economic Association, vol. 103(2), pages 732-770, April.
    8. Robin Greenwood & Samuel G. Hanson, 2013. "Issuer Quality and Corporate Bond Returns," The Review of Financial Studies, Society for Financial Studies, vol. 26(6), pages 1483-1525.
    9. Tobias Adrian & Erkko Etula & Tyler Muir, 2014. "Financial Intermediaries and the Cross-Section of Asset Returns," Journal of Finance, American Finance Association, vol. 69(6), pages 2557-2596, December.
    10. Tobias Adrian & Hyun Song Shin, 2014. "Procyclical Leverage and Value-at-Risk," The Review of Financial Studies, Society for Financial Studies, vol. 27(2), pages 373-403.
    11. Adrian, Tobias & Duarte, Fernando & Grinberg, Federico & Mancini-Griffoli, Tommaso, 2018. "Monetary Policy and Financial Conditions: A Cross-Country Study," CEPR Discussion Papers 12681, C.E.P.R. Discussion Papers.
    12. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    13. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    14. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    15. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    16. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
    17. Philip Lowe & Claudio Borio, 2002. "Asset prices, financial and monetary stability: exploring the nexus," BIS Working Papers 114, Bank for International Settlements.
    18. Tobias Adrian & Fernando M. Duarte, 2016. "Financial vulnerability and monetary policy," Staff Reports 804, Federal Reserve Bank of New York.
    19. repec:hal:journl:peer-00844811 is not listed on IDEAS
    20. Justin Wolfers, 2003. "Is Business Cycle Volatility Costly? Evidence from Surveys of Subjective Well‐Being," International Finance, Wiley Blackwell, vol. 6(1), pages 1-26, March.
    21. Antonio F. Galvao & Gabriel Montes-Rojas, 2015. "On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study," Econometrics, MDPI, vol. 3(3), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    2. Brandão-Marques, Luis & Chen, Qianying & Raddatz, Claudio & Vandenbussche, Jérôme & Xie, Peichu, 2022. "The riskiness of credit allocation and financial stability," Journal of Financial Intermediation, Elsevier, vol. 51(C).
    3. Tobias Adrian & Nellie Liang, 2018. "Monetary Policy, Financial Conditions, and Financial Stability," International Journal of Central Banking, International Journal of Central Banking, vol. 14(1), pages 73-131, January.
    4. Andrea Ajello & Nina Boyarchenko & François Gourio & Andrea Tambalotti, 2022. "Financial Stability Considerations for Monetary Policy: Theoretical Mechanisms," Staff Reports 1002, Federal Reserve Bank of New York.
    5. William Chen & Gregory Phelan, 2023. "Should Monetary Policy Target Financial Stability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 49, pages 181-200, July.
    6. Pietro Dindo & Andrea Modena & Loriana Pelizzon, 2019. "Risk Pooling, Leverage, and the Business Cycle," Working Papers 2019: 21, Department of Economics, University of Venice "Ca' Foscari".
    7. Vadim Elenev & Tim Landvoigt & Stijn Van Nieuwerburgh, 2021. "A Macroeconomic Model With Financially Constrained Producers and Intermediaries," Econometrica, Econometric Society, vol. 89(3), pages 1361-1418, May.
    8. Kargar, Mahyar, 2021. "Heterogeneous intermediary asset pricing," Journal of Financial Economics, Elsevier, vol. 141(2), pages 505-532.
    9. Wang, Hao & Xu, Ning & Yin, Haiyan & Ji, Hao, 2022. "The dynamic impact of monetary policy on financial stability in China after crises," Pacific-Basin Finance Journal, Elsevier, vol. 75(C).
    10. Li, Zehao, 2022. "Financial intermediary leverage and monetary policy transmission," European Economic Review, Elsevier, vol. 144(C).
    11. Wang, Bo & Xiao, Yang, 2023. "The term effect of financial cycle variables on GDP growth," Journal of International Money and Finance, Elsevier, vol. 139(C).
    12. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    13. repec:hal:spmain:info:hdl:2441/293qice3lj861rvos9ns14n0h0 is not listed on IDEAS
    14. Modena, Andrea, 2020. "Recapitalization, bailout, and long-run welfare in a dynamic model of banking," SAFE Working Paper Series 292, Leibniz Institute for Financial Research SAFE.
    15. Villacorta, Alonso, 2018. "Business cycles and the balance sheets of the financial and non-financial sectors," ESRB Working Paper Series 68, European Systemic Risk Board.
    16. He, Zhiguo & Kelly, Bryan & Manela, Asaf, 2017. "Intermediary asset pricing: New evidence from many asset classes," Journal of Financial Economics, Elsevier, vol. 126(1), pages 1-35.
    17. Valentin Haddad & David Sraer, 2020. "The Banking View of Bond Risk Premia," Journal of Finance, American Finance Association, vol. 75(5), pages 2465-2502, October.
    18. Jondeau, Eric & Sahuc, Jean-Guillaume, 2022. "Bank capital shortfall in the euro area," Journal of Financial Stability, Elsevier, vol. 62(C).
    19. André, Christophe & Caraiani, Petre & Călin, Adrian Cantemir & Gupta, Rangan, 2022. "Can monetary policy lean against housing bubbles?," Economic Modelling, Elsevier, vol. 110(C).
    20. Gruenthaler, Thomas & Lorenz, Friedrich & Meyerhof, Paul, 2022. "Option-based intermediary leverage," Journal of Banking & Finance, Elsevier, vol. 145(C).
    21. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.

    More about this item

    Keywords

    WP; dummy variable; Gaussian distribution; monetary policy; real GDP; time series; downside risk; macrofinancial linkages; volatility paradox; financial stability; quantile regression; term structure; GaR estimate; FCI group; growth distribution; coefficient estimate; GaR measure; projections estimation method; GaR decline; credit growth; FCI decile group; OLS panel estimation method; Growth-at-risk assessment; Credit booms; Credit; Financial sector risk; Global;
    All these keywords.

    JEL classification:

    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2018/180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.