[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hit/hituec/580.html
   My bibliography  Save this paper

Rationality and Solutions to Nonconvex Bargaining Problems: Rationalizability and Nash Solutions

Author

Listed:
  • Xu, Yongsheng
  • Yoshihara, Naoki
  • 吉原, 直毅
Abstract
Conditions α and β are two well-known rationality conditions in the theory of rational choice. This paper examines the implications of weaker versions of these two rationality conditions in the context of solutions to nonconvex bargaining problems. It is shown that, together with the standard axioms of efficiency and strict individual rationality, they imply rationalizability of solutions to nonconvex bargaining problems. We then characterize asymmetric Nash solutions by imposing a continuity and the scale invariance requirements. These results make a further connection between solutions to non-convex bargaining problems and rationalizability of choice function in the theory of rational choice.

Suggested Citation

  • Xu, Yongsheng & Yoshihara, Naoki & 吉原, 直毅, 2012. "Rationality and Solutions to Nonconvex Bargaining Problems: Rationalizability and Nash Solutions," Discussion Paper Series 580, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hit:hituec:580
    Note: 41122
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/23298/DP580.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alvin E. Roth, 1977. "Individual Rationality and Nash's Solution to the Bargaining Problem," Mathematics of Operations Research, INFORMS, vol. 2(1), pages 64-65, February.
    2. Marco Mariotti, 1999. "Fair Bargains: Distributive Justice and Nash Bargaining Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(3), pages 733-741.
    3. Lin Zhou, 1997. "The Nash Bargaining Theory with Non-Convex Problems," Econometrica, Econometric Society, vol. 65(3), pages 681-686, May.
    4. Bossert, Walter, 1994. "Rational choice and two-person bargaining solutions," Journal of Mathematical Economics, Elsevier, vol. 23(6), pages 549-563, November.
    5. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    6. Thomson, William, 1981. "A class of solutions to bargaining problems," Journal of Economic Theory, Elsevier, vol. 25(3), pages 431-441, December.
    7. Sen, Amartya K, 1977. "Social Choice Theory: A Re-examination," Econometrica, Econometric Society, vol. 45(1), pages 53-89, January.
    8. Peters, H.J.M. & Vermeulen, A.J., 2006. "WPO, COV and IIA bargaining solutions," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Amartya K. Sen, 1971. "Choice Functions and Revealed Preference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 38(3), pages 307-317.
    10. Vincenzo Denicolò & Marco Mariotti, 2000. "Nash Bargaining Theory, Nonconvex Problems and Social Welfare Orderings," Theory and Decision, Springer, vol. 48(4), pages 351-358, June.
    11. Michele Lombardi & Marco Mariotti, 2009. "Uncovered bargaining solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(4), pages 601-610, November.
    12. Herzberger, Hans G, 1973. "Ordinal Preference and Rational Choice," Econometrica, Econometric Society, vol. 41(2), pages 187-237, March.
    13. Marco Mariotti, 1998. "Nash bargaining theory when the number of alternatives can be finite," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(3), pages 413-421.
    14. Mariotti, Marco, 1998. "Extending Nash's Axioms to Nonconvex Problems," Games and Economic Behavior, Elsevier, vol. 22(2), pages 377-383, February.
    15. Yongsheng Xu, 2002. "Functioning, capability and the standard of living - an axiomatic approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(2), pages 387-399.
    16. John A. Weymark & Kai-yuen Tsui, 1997. "Social welfare orderings for ratio-scale measurable utilities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(2), pages 241-256.
    17. Xu, Yongsheng & Yoshihara, Naoki, 2006. "Alternative characterizations of three bargaining solutions for nonconvex problems," Games and Economic Behavior, Elsevier, vol. 57(1), pages 86-92, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongsheng Xu & Naoki Yoshihara, 2020. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 7-41, November.
    2. William Thomson, 2022. "On the axiomatic theory of bargaining: a survey of recent results," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 491-542, December.
    3. Yongsheng Xu & Naoki Yoshihara, 2019. "An equitable Nash solution to nonconvex bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 769-779, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongsheng Xu & Naoki Yoshihara, 2020. "Nonconvex Bargaining Problems: Some Recent Developments," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 7-41, November.
    2. Cheng-Zhong Qin & Shuzhong Shi & Guofu Tan, 2015. "Nash bargaining for log-convex problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(3), pages 413-440, April.
    3. Xu, Yongsheng & Yoshihara, Naoki, 2011. "Proportional Nash solutions - A new and procedural analysis of nonconvex bargaining problems," Discussion Paper Series 552, Institute of Economic Research, Hitotsubashi University.
    4. Hans Peters & Dries Vermeulen, 2012. "WPO, COV and IIA bargaining solutions for non-convex bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 851-884, November.
    5. Yongsheng Xu & Naoki Yoshihara, 2019. "An equitable Nash solution to nonconvex bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 769-779, September.
    6. Attanasi, Giuseppe & Corazzini, Luca & Passarelli, Francesco, 2017. "Voting as a lottery," Journal of Public Economics, Elsevier, vol. 146(C), pages 129-137.
    7. Michele Lombardi & Marco Mariotti, 2009. "Uncovered bargaining solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(4), pages 601-610, November.
    8. William Thomson, 2022. "On the axiomatic theory of bargaining: a survey of recent results," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 491-542, December.
    9. Paola Manzini & Marco Mariotti, 2006. "Two-stage Bargaining Solutions," Working Papers 572, Queen Mary University of London, School of Economics and Finance.
    10. David H. Wolpert & James Bono, 2010. "A theory of unstructured bargaining using distribution-valued solution concepts," Working Papers 2010-14, American University, Department of Economics.
    11. Zambrano, Eduardo, 2016. "‘Vintage’ Nash bargaining without convexity," Economics Letters, Elsevier, vol. 141(C), pages 32-34.
    12. Lombardi, Michele & Yoshihara, Naoki, 2010. "Alternative characterizations of the proportional solution for nonconvex bargaining problems with claims," Economics Letters, Elsevier, vol. 108(2), pages 229-232, August.
    13. Tyson, Christopher J., 2008. "Cognitive constraints, contraction consistency, and the satisficing criterion," Journal of Economic Theory, Elsevier, vol. 138(1), pages 51-70, January.
    14. Tyson, Christopher J., 2008. "Cognitive constraints, contraction consistency, and the satisficing criterion," Journal of Economic Theory, Elsevier, vol. 138(1), pages 51-70, January.
    15. Vartiainen, Hannu, 2007. "Collective choice with endogenous reference outcome," Games and Economic Behavior, Elsevier, vol. 58(1), pages 172-180, January.
    16. Vincenzo Denicolò & Marco Mariotti, 2000. "Nash Bargaining Theory, Nonconvex Problems and Social Welfare Orderings," Theory and Decision, Springer, vol. 48(4), pages 351-358, June.
    17. Marco Mariotti, 2003. "Even Allocations For Generalised Rationing Problems," Working Papers. Serie AD 2003-10, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    18. Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
    19. Luís Carvalho, 2014. "A Constructive Proof of the Nash Bargaining Solution," Working Papers Series 2 14-01, ISCTE-IUL, Business Research Unit (BRU-IUL).

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:hituec:580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hiromichi Miyake (email available below). General contact details of provider: https://edirc.repec.org/data/iehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.