[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hhs/nhheco/2013_001.html
   My bibliography  Save this paper

Identification in Models with Discrete Variables

Author

Listed:
  • Laffers, Lukas

    (Dept. of Economics, Norwegian School of Economics and Business Administration)

Abstract
This paper provides a new simple and computationally tractable method for determining an identified set that can account for a broad set of economic models when economic variables are discrete. Using this method it is shown on a simple example how can imperfect instruments affect the size of the identified set when strict exogeneity is relaxed. It could be of great interest to know to what extent are the results driven by the exogeneity assumption which is often a subject of controversy. Moreover, flexibility gained from the new proposed method suggests that the determination of the identified set need not be application-specific anymore. This paper presents a unifying framework that approaches identification in an algorithmic way.

Suggested Citation

  • Laffers, Lukas, 2013. "Identification in Models with Discrete Variables," Discussion Paper Series in Economics 1/2013, Norwegian School of Economics, Department of Economics.
  • Handle: RePEc:hhs:nhheco:2013_001
    as

    Download full text from publisher

    File URL: http://www.nhh.no/Admin/Public/DWSDownload.aspx?File=%2fFiles%2fFiler%2finstitutter%2fsam%2fDiscussion+papers%2f2013%2f01.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marc Henry & Romuald Méango & Maurice Queyranne, 2015. "Combinatorial approach to inference in partially identified incomplete structural models," Quantitative Economics, Econometric Society, vol. 6(2), pages 499-529, July.
    2. Beresteanu, Arie & Molchanov, Ilya & Molinari, Francesca, 2012. "Partial identification using random set theory," Journal of Econometrics, Elsevier, vol. 166(1), pages 17-32.
    3. Galichon, Alfred & Henry, Marc, 2009. "A test of non-identifying restrictions and confidence regions for partially identified parameters," Journal of Econometrics, Elsevier, vol. 152(2), pages 186-196, October.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    6. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    7. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4ao8ocg is not listed on IDEAS
    8. Marc Henry & Romuald Méango & Maurice Queyranne, 2012. "Combinatorial Bootstrap Inference IN in Prtially Identified Incomplete Structural Models," CIRJE F-Series CIRJE-F-837, CIRJE, Faculty of Economics, University of Tokyo.
    9. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    10. Joshua Angrist & Eric Bettinger & Erik Bloom & Elizabeth King & Michael Kremer, 2002. "Vouchers for Private Schooling in Colombia: Evidence from a Randomized Natural Experiment," American Economic Review, American Economic Association, vol. 92(5), pages 1535-1558, December.
    11. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    12. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    13. Lukáš Lafférs, 2019. "Bounding average treatment effects using linear programming," Empirical Economics, Springer, vol. 57(3), pages 727-767, September.
    14. Freyberger, Joachim & Horowitz, Joel L., 2015. "Identification and shape restrictions in nonparametric instrumental variables estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 41-53.
    15. Andrew Chesher, 2009. "Single equation endogenous binary reponse models," CeMMAP working papers CWP23/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    17. Martin Huber & Lukas Laffers & Giovanni Mellace, 2017. "Sharp IV Bounds on Average Treatment Effects on the Treated and Other Populations Under Endogeneity and Noncompliance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 56-79, January.
    18. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4ao8ocg is not listed on IDEAS
    19. Andrew Chesher & Adam M. Rosen & Konrad Smolinski, 2013. "An instrumental variable model of multiple discrete choice," Quantitative Economics, Econometric Society, vol. 4(2), pages 157-196, July.
    20. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 235-260.
    21. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
    22. Manski, Charles F. & Thompson, T. Scott, 1986. "Operational characteristics of maximum score estimation," Journal of Econometrics, Elsevier, vol. 32(1), pages 85-108, June.
    23. Arie Beresteanu & Ilya Molchanov & Francesca Molinari, 2011. "Sharp Identification Regions in Models With Convex Moment Predictions," Econometrica, Econometric Society, vol. 79(6), pages 1785-1821, November.
    24. Andrew Chesher, 2010. "Instrumental Variable Models for Discrete Outcomes," Econometrica, Econometric Society, vol. 78(2), pages 575-601, March.
    25. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    26. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Finite sample inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 152(2), pages 93-103, October.
    27. Ivar Ekeland & Alfred Galichon & Marc Henry, 2010. "Optimal transportation and the falsifiability of incompletely specified economic models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(2), pages 355-374, February.
    28. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    29. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    30. Federico A. Bugni, 2010. "Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set," Econometrica, Econometric Society, vol. 78(2), pages 735-753, March.
    31. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    32. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    33. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    34. Jinyong Hahn & Jerry Hausman, 2010. "Estimation with Valid and Invalid Instruments," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 25-57, National Bureau of Economic Research, Inc.
    35. Azeem M. Shaikh & Edward J. Vytlacil, 2011. "Partial Identification in Triangular Systems of Equations With Binary Dependent Variables," Econometrica, Econometric Society, vol. 79(3), pages 949-955, May.
    36. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    37. Alfred Galichon & Marc Henry, 2011. "Set Identification in Models with Multiple Equilibria," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1264-1298.
    38. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    39. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    40. repec:adr:anecst:y:2005:i:79-80:p:02 is not listed on IDEAS
    41. repec:cwl:cwldpp:1761rr is not listed on IDEAS
    42. Charles F. Manski, 2007. "Partial Identification Of Counterfactual Choice Probabilities," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1393-1410, November.
    43. Lafférs, Lukáš, 2013. "A note on bounding average treatment effects," Economics Letters, Elsevier, vol. 120(3), pages 424-428.
    44. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    45. Ivar Ekeland & Alfred Galichon & Marc Henry, 2010. "Optimal transportation and the falsifiability of incompletely specified economic models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(2), pages 355-374, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukáš Lafférs, 2019. "Bounding average treatment effects using linear programming," Empirical Economics, Springer, vol. 57(3), pages 727-767, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    2. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    4. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    6. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    7. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    8. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    9. Christian Bontemps & Thierry Magnac, 2017. "Set Identification, Moment Restrictions, and Inference," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 103-129, September.
    10. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    11. Lukáš Lafférs, 2019. "Bounding average treatment effects using linear programming," Empirical Economics, Springer, vol. 57(3), pages 727-767, September.
    12. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    13. Andrew Chesher & Adam M. Rosen, 2017. "Generalized Instrumental Variable Models," Econometrica, Econometric Society, vol. 85, pages 959-989, May.
    14. Gu, Jiaying & Russell, Thomas M., 2023. "Partial identification in nonseparable binary response models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 235(2), pages 528-562.
    15. Alexander Torgovitsky, 2019. "Partial identification by extending subdistributions," Quantitative Economics, Econometric Society, vol. 10(1), pages 105-144, January.
    16. Donald S. Poskitt & Xueyan Zhao, 2023. "Bootstrap Hausdorff Confidence Regions for Average Treatment Effect Identified Sets," Monash Econometrics and Business Statistics Working Papers 9/23, Monash University, Department of Econometrics and Business Statistics.
    17. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    18. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    19. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    20. Sasaki, Yuya & Takahashi, Yuya & Xin, Yi & Hu, Yingyao, 2023. "Dynamic discrete choice models with incomplete data: Sharp identification," Journal of Econometrics, Elsevier, vol. 236(1).

    More about this item

    Keywords

    Identification; Models; Discrete Variables.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhheco:2013_001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Karen Reed-Larsen (email available below). General contact details of provider: https://edirc.repec.org/data/sonhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.