[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/has/discpr/1205.html
   My bibliography  Save this paper

Stochastic Bankruptcy Games

Author

Listed:
  • Helga Habis

    (Institute of Economics, Hungarian Academy of Sciences Department of Microeconomics, Corvinus University of Budapest)

  • P. Jean-Jacques Herings

    (Department of Economics, Universiteit Maastricht)

Abstract
We study bankruptcy games where the estate and the claims have stochastic values. We use the Weak Sequential Core as the solution concept for such games.We test the stability of a number of well known division rules in this stochastic setting and find that most of them are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.

Suggested Citation

  • Helga Habis & P. Jean-Jacques Herings, 2012. "Stochastic Bankruptcy Games," CERS-IE WORKING PAPERS 1205, Institute of Economics, Centre for Economic and Regional Studies.
  • Handle: RePEc:has:discpr:1205
    as

    Download full text from publisher

    File URL: http://econ.core.hu/file/download/mtdp/MTDP1205.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laurence Kranich & Andrés Perea & Hans Peters, 2005. "Core Concepts For Dynamic Tu Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 43-61.
    2. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-635, May.
    3. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    4. Zsolt Darvas, 2011. "A tale of three countries- recovery after banking crises," Policy Contributions 663, Bruegel.
    5. Nir Dagan, 1996. "New characterizations of old bankruptcy rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(1), pages 51-59, January.
    6. Dinko Dimitrov & Stef Tijs & Rodica Branzei, 2003. "Shapley-like values for interval bankruptcy games," Economics Bulletin, AccessEcon, vol. 3(9), pages 1-8.
    7. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    8. S. C. Littlechild & G. Owen, 1973. "A Simple Expression for the Shapley Value in a Special Case," Management Science, INFORMS, vol. 20(3), pages 370-372, November.
    9. P. Herings & A. Predtetchinski & A. Perea, 2006. "The Weak Sequential Core for Two-Period Economies," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 55-65, April.
    10. Predtetchinski, Arkadi & Herings, P. Jean-Jacques & Peters, Hans, 2002. "The strong sequential core for two-period economies," Journal of Mathematical Economics, Elsevier, vol. 38(4), pages 465-482, December.
    11. Judit Karsai, 2012. "Development of the Hungarian Venture Capital and Private Equity Industry over the Past Two Decades," CERS-IE WORKING PAPERS 1201, Institute of Economics, Centre for Economic and Regional Studies.
    12. Granot, D & Maschler, M & Owen, G & Zhu, W.R., 1996. "The Kernel/Nucleolus of a Standard Tree Game," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(2), pages 219-244.
    13. repec:ebl:ecbull:v:3:y:2003:i:9:p:1-8 is not listed on IDEAS
    14. Habis, Helga & Herings, P. Jean-Jacques, 2011. "Transferable utility games with uncertainty," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2126-2139, September.
    15. Zsombor Z. Méder & András Simonovits & János Vinczeb, 2012. "Tax Morale and Tax Evasion: Social Preferences and Bounded Rationality," Economic Analysis and Policy, Elsevier, vol. 42(2), pages 171-188, September.
    16. Ray, Debraj, 1989. "Credible Coalitions and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 185-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaka Cepec & Peter Grajzl, 0. "Management turnover, ownership change, and post-bankruptcy failure of small businesses," Small Business Economics, Springer, vol. 0, pages 1-27.
    2. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    3. Mirjam Groote Schaarsberg & Hans Reijnierse & Peter Borm, 2018. "On solving mutual liability problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(3), pages 383-409, June.
    4. William Thomson, 2013. "Game-Theoretic Analysis Of Bankruptcy And Taxation Problems: Recent Advances," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-14.
    5. Habis, Helga, 2012. "Sztochasztikus csődjátékok - avagy hogyan osszunk szét egy bizonytalan méretű tortát? [Stochastic bankruptcy games. How can a cake of uncertain dimensions be divided?]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1299-1310.
    6. Koster, Maurice & Boonen, Tim J., 2019. "Constrained stochastic cost allocation," Mathematical Social Sciences, Elsevier, vol. 101(C), pages 20-30.
    7. Thomson, William, 2015. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update," Mathematical Social Sciences, Elsevier, vol. 74(C), pages 41-59.
    8. Groote Schaarsberg, M. & Reijnierse, J.H. & Borm, P.E.M., 2013. "On Solving Liability Problems," Other publications TiSEM b7a1e268-bd6d-4177-8056-8, Tilburg University, School of Economics and Management.
    9. Acosta-Vega, Rick K. & Algaba, Encarnación & Sánchez-Soriano, Joaquín, 2023. "Design of water quality policies based on proportionality in multi-issue problems with crossed claims," European Journal of Operational Research, Elsevier, vol. 311(2), pages 777-788.
    10. repec:hal:pseose:halshs-01207823 is not listed on IDEAS
    11. Jaka Cepec & Peter Grajzl, 2021. "Management turnover, ownership change, and post-bankruptcy failure of small businesses," Small Business Economics, Springer, vol. 57(1), pages 555-581, June.
    12. Andrea Gallice, 2019. "Bankruptcy problems with reference-dependent preferences," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(1), pages 311-336, March.
    13. Boonen, Tim J., 2019. "Equilibrium recoveries in insurance markets with limited liability," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 38-45.
    14. Schumacher, Johannes M., 2021. "Ex-ante estate division under strong Pareto efficiency," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 10-24.
    15. Jingyi Xue, 2018. "Fair division with uncertain needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 105-136, June.
    16. Sinan Ertemel & Rajnish Kumar, 2018. "Proportional rules for state contingent claims," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 229-246, March.
    17. Chatterjee, Siddharth & Ertemel, Sinan & Kumar, Rajnish, 2023. "Rationing rules for risky claims," Journal of Mathematical Economics, Elsevier, vol. 108(C).
    18. Emin Karagözoğlu & Kerim Keskin & Çağrı Sağlam, 2023. "(In)efficiency and equitability of equilibrium outcomes in a family of bargaining games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 175-193, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habis, Helga & Herings, P. Jean-Jacques, 2011. "Transferable utility games with uncertainty," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2126-2139, September.
    2. Habis, Helga, 2012. "Sztochasztikus csődjátékok - avagy hogyan osszunk szét egy bizonytalan méretű tortát? [Stochastic bankruptcy games. How can a cake of uncertain dimensions be divided?]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1299-1310.
    3. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, September.
    4. Thomson, William, 2015. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update," Mathematical Social Sciences, Elsevier, vol. 74(C), pages 41-59.
    5. Helga Habis & P. Jean-Jacques Herings, 2010. "A Note On The Weak Sequential Core Of Dynamic Tu Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 407-416.
    6. Fatemeh Babaei & Hamidreza Navidi & Stefano Moretti, 2022. "A bankruptcy approach to solve the fixed cost allocation problem in transport systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 332-358, July.
    7. Sinan Ertemel & Rajnish Kumar, 2018. "Proportional rules for state contingent claims," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 229-246, March.
    8. Ehud Lehrer & Marco Scarsini, 2013. "On the Core of Dynamic Cooperative Games," Dynamic Games and Applications, Springer, vol. 3(3), pages 359-373, September.
    9. José Alcalde & María Marco & José Silva, 2005. "Bankruptcy games and the Ibn Ezra’s proposal," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(1), pages 103-114, July.
    10. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    11. Zsolt Darvas, 2013. "Monetary transmission in three central European economies: evidence from time-varying coefficient vector autoregressions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 40(2), pages 363-390, May.
    12. Peter Knudsen & Lars Østerdal, 2012. "Merging and splitting in cooperative games: some (im)possibility results," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 763-774, November.
    13. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    14. Jingyi Xue, 2018. "Fair division with uncertain needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 105-136, June.
    15. Bas Dietzenbacher & Yuki Tamura & William Thomson, 2024. "Partial-implementation invariance and claims problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 63(1), pages 203-229, August.
    16. Jens Leth Hougaard & Juan D. Moreno-Ternero & Lars Peter Østerdal, 2010. "Baseline Rationing," Discussion Papers 10-16, University of Copenhagen. Department of Economics.
    17. Quant, M. & Borm, P.E.M. & Maaten, R., 2005. "A Concede-and-Divide Rule for Bankruptcy Problems," Discussion Paper 2005-20, Tilburg University, Center for Economic Research.
    18. Jaume García-Segarra & Miguel Ginés-Vilar, 2023. "Additive adjudication of conflicting claims," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 93-116, March.
    19. Juan D. Moreno-Ternero & Min-Hung Tsay & Chun-Hsien Yeh, 2020. "A strategic justification of the Talmud rule based on lower and upper bounds," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1045-1057, December.
    20. Hervé Moulin & Jay Sethuraman, 2013. "The Bipartite Rationing Problem," Operations Research, INFORMS, vol. 61(5), pages 1087-1100, October.

    More about this item

    Keywords

    transferable utility games; uncertainty; weak sequential core; bankruptcy games;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:has:discpr:1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nora Horvath (email available below). General contact details of provider: https://edirc.repec.org/data/iehashu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.