[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/1994-028.html
   My bibliography  Save this paper

Using genetic algorithms to model the evolution of heterogeneous beliefs

Author

Abstract
Genetic algorithms have been used by economists to model the process by which a population of heterogeneous agents learn how to optimize a given objective. However, most general equilibrium models in use today presume that agents already know how to optimize. If agents face any uncertainty, it is typically with regard to their expectations about the future. In this paper, we show how a genetic algorithm can be used to model the process by which a population of agents with heterogeneous beliefs learns how to form rational expectation forecasts. We retain the assumption that agents optimally solve their maximization problem at each date given their beliefs at each date. Agents initially lack the ability to form rational expectations forecasts and have, instead, heterogeneous beliefs about the future. Using a genetic algorithm to model the evolution of these beliefs, we find that our population of artificial adaptive agents eventually coordinates their beliefs so as to achieve a rational expectations equilibrium of the model. We also report the results of a number of computational experiments that were performed using our genetic algorithm model.

Suggested Citation

  • James B. Bullard & John Duffy, 1994. "Using genetic algorithms to model the evolution of heterogeneous beliefs," Working Papers 1994-028, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:1994-028
    as

    Download full text from publisher

    File URL: http://research.stlouisfed.org/wp/more/1994-028/
    Download Restriction: no

    File URL: http://research.stlouisfed.org/wp/1994/94-028.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    2. Marimon, Ramon & Sunder, Shyam, 1994. "Expectations and Learning under Alternative Monetary Regimes: An Experimental Approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 131-162, January.
    3. Thomas J. Sargent & Neil Wallace, 1984. "Some Unpleasant Monetarist Arithmetic," Palgrave Macmillan Books, in: Brian Griffiths & Geoffrey E. Wood (ed.), Monetarism in the United Kingdom, pages 15-41, Palgrave Macmillan.
    4. Wilson, Charles A., 1981. "Equilibrium in dynamic models with an infinity of agents," Journal of Economic Theory, Elsevier, vol. 24(1), pages 95-111, February.
    5. Lucas, Robert E, Jr, 1986. "Adaptive Behavior and Economic Theory," The Journal of Business, University of Chicago Press, vol. 59(4), pages 401-426, October.
    6. Arifovic, Jasmina & Eaton, Curtis, 1995. "Coordination via Genetic Learning," Computational Economics, Springer;Society for Computational Economics, vol. 8(3), pages 181-203, August.
    7. Arifovic, Jasmina, 1995. "Genetic algorithms and inflationary economies," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 219-243, August.
    8. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    9. Barnett,William A. & Geweke,John & Shell,Karl (ed.), 1989. "Economic Complexity: Chaos, Sunspots, Bubbles, and Nonlinearity," Cambridge Books, Cambridge University Press, number 9780521355636, September.
    10. Bullard James, 1994. "Learning Equilibria," Journal of Economic Theory, Elsevier, vol. 64(2), pages 468-485, December.
    11. Bullard, James & Duffy, John, 1998. "Learning And The Stability Of Cycles," Macroeconomic Dynamics, Cambridge University Press, vol. 2(1), pages 22-48, March.
    12. Bullard, James & Duffy, John, 1998. "A model of learning and emulation with artificial adaptive agents," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 179-207, February.
    13. Routledge, Bryan R, 1999. "Adaptive Learning in Financial Markets," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1165-1202.
    14. Arifovic, Jasmina & Bullard, James & Duffy, John, 1997. "The Transition from Stagnation to Growth: An Adaptive Learning Approach," Journal of Economic Growth, Springer, vol. 2(2), pages 185-209, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arifovic, Jasmina, 2001. "Evolutionary dynamics of currency substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 395-417, March.
    2. Shu-Heng Chen & Chia-Hsuan Yeh, 1999. "Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market," Computing in Economics and Finance 1999 613, Society for Computational Economics.
    3. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    4. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    5. Edmund Chattoe-Brown, 1998. "Just How (Un)realistic Are Evolutionary Algorithms As Representations of Social Processes?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 1(3), pages 1-2.
    6. Arifovic, Jasmina & Gencay, Ramazan, 2000. "Statistical properties of genetic learning in a model of exchange rate," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 981-1005, June.
    7. Arifovic, Jasmina, 1995. "Genetic algorithms and inflationary economies," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 219-243, August.
    8. Jie-Shin Lin & Chris Birchenhall, 2000. "Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models," Computing in Economics and Finance 2000 327, Society for Computational Economics.
    9. John Duffy, 1998. "Monetary theory in the laboratory," Review, Federal Reserve Bank of St. Louis, issue Sep, pages 9-26.
    10. Hommes, Cars & Huber, Stefanie J. & Minina, Daria & Salle, Isabelle, 2024. "Learning in a complex world: Insights from an OLG lab experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 220(C), pages 813-837.
    11. Thomas Riechmann, 1999. "Learning and behavioral stability An economic interpretation of genetic algorithms," Journal of Evolutionary Economics, Springer, vol. 9(2), pages 225-242.
    12. Georges, Christophre, 2006. "Learning with misspecification in an artificial currency market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(1), pages 70-84, May.
    13. Bullard, James & Duffy, John, 1998. "A model of learning and emulation with artificial adaptive agents," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 179-207, February.
    14. Christoph Zott, 2002. "When Adaptation Fails," Journal of Conflict Resolution, Peace Science Society (International), vol. 46(6), pages 727-753, December.
    15. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    16. Jie-Shin Lin, 2005. "Learning in a Network Economy," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 59-74, February.
    17. Goeree, Jacob K. & Hommes, Cars H., 2000. "Heterogeneous beliefs and the non-linear cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 761-798, June.
    18. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    19. Dawid, Herbert, 1999. "On the convergence of genetic learning in a double auction market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1545-1567, September.
    20. Jasmina Arifovic & James B. Bullard & John Duffy, 1995. "Learning in a model of economic growth and development," Working Papers 1995-017, Federal Reserve Bank of St. Louis.

    More about this item

    Keywords

    Econometrics; time series analysis;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:1994-028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Oates (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.