[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/fip/fedkrw/87675.html
   My bibliography  Save this paper

Assessing Macroeconomic Tail Risks in a Data-Rich Environment

Author

Listed:
  • Thomas R. Cook
  • Taeyoung Doh
Abstract
We use a large set of economic and financial indicators to assess tail risks of the three macroeconomic variables: real GDP, unemployment, and inflation. When applied to U.S. data, we find evidence that a dense model using principal components (PC) as predictors might be misspecified by imposing the “common slope” assumption on the set of predictors across multiple quantiles. The common slope assumption ignores the heterogeneous informativeness of individual predictors on different quantiles. However, the parsimony of the PC-based approach improves the accuracy of out-of-sample forecasts when combined with a sparse model using the dynamic model averaging method. Out-of-sample analysis of U.S. data suggests that the downside risk for real macro variables spiked to by the end of the Great Recession but subsequently declined to a negligible level. On the other hand, the downside tail risk for inflation fluctuated around a non-negligible level even after the end of the Great Recession. The disconnect between the downside risk of inflation and that of real activities can be in line with the evidence for the reduced role of the output gap for inflation during the recent period.

Suggested Citation

  • Thomas R. Cook & Taeyoung Doh, 2019. "Assessing Macroeconomic Tail Risks in a Data-Rich Environment," Research Working Paper RWP 19-12, Federal Reserve Bank of Kansas City.
  • Handle: RePEc:fip:fedkrw:87675
    DOI: 10.18651/RWP2019-12
    as

    Download full text from publisher

    File URL: https://www.kansascityfed.org/documents/4626/Assessing_Macroeconomic_Tail_Risks_in_a_Data-Rich_Environment.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18651/RWP2019-12?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    2. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
    3. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2024. "Investigating Growth-at-Risk Using a Multicountry Nonparametric Quantile Factor Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1302-1317, October.
    4. Deng, Chuang & Wu, Jian, 2023. "Macroeconomic downside risk and the effect of monetary policy," Finance Research Letters, Elsevier, vol. 54(C).
    5. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    6. Gupta, Rangan & Sheng, Xin & Pierdzioch, Christian & Ji, Qiang, 2021. "Disaggregated oil shocks and stock-market tail risks: Evidence from a panel of 48 economics," Research in International Business and Finance, Elsevier, vol. 58(C).
    7. Rangan Gupta & Xin Sheng & Christian Pierdzioch & Qiang Ji, 2021. "Disaggregated Oil Shocks and Stock-Market Tail Risks: Evidence from a Panel of 48 Countries," Working Papers 202106, University of Pretoria, Department of Economics.

    More about this item

    Keywords

    Quantile Regressions; tail risks; Variable Selection; Dynamic Model Averaging;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedkrw:87675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zach Kastens (email available below). General contact details of provider: https://edirc.repec.org/data/frbkcus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.