[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bei/00bewp/0031.html
   My bibliography  Save this paper

How decentralization drives a change of the institutional framework on the distribution grid level in the electricity sector – the case of local congestion markets

Author

Listed:
  • Marius Buchmann
Abstract
The increasing share of renewables in the electricity system results in congestion on all network levels. To address this congestion, the EU Commission proposed that distribution network operators become responsible for local congestion management. Within this paper we analyze the institutional implications of the introduction of local congestion markets and identify three discrimination concerns related to the DSO’s role on these markets. We will argue that the standard governance models (legal unbundling, ownership unbundling, IDSO) are not adequate here. Instead, we discuss two novel approaches: The introduction of Independent Distribution Operators (IDO) or alternatively, a Common Flexibility Platform (CFP). Since the CFP does not require stronger unbundling of DSOs, we recommend to investigate this solution further.

Suggested Citation

  • Marius Buchmann, 2019. "How decentralization drives a change of the institutional framework on the distribution grid level in the electricity sector – the case of local congestion markets," Bremen Energy Working Papers 0031, Bremen Energy Research.
  • Handle: RePEc:bei:00bewp:0031
    as

    Download full text from publisher

    File URL: https://www.sciencedirect.com/science/article/pii/S0301421520304523
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buchmann, Marius, 2017. "The need for competition between decentralized governance approaches for data exchange in smart electricity grids—Fiscal federalism vs. polycentric governance," Journal of Economic Behavior & Organization, Elsevier, vol. 139(C), pages 106-117.
    2. de Nooij, Michiel & Baarsma, Barbara, 2009. "Divorce comes at a price: An ex ante welfare analysis of ownership unbundling of the distribution and commercial companies in the Dutch energy sector," Energy Policy, Elsevier, vol. 37(12), pages 5449-5458, December.
    3. Ignacio J. Pérez-Arriaga, Jesse D. Jenkins, and Carlos Batlle, 2017. "A regulatory framework for an evolving electricity sector: Highlights of the MIT utility of the future study," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    4. Sinan Küfeoglu & Michael Pollitt & Karim Anaya, 2018. "Electric Power Distribution in the World: Today and Tomorrow," Working Papers EPRG 1826, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.
    6. Jean-Michel Glachant & Dominique Finon & Adrien de Hauteclocque, 2011. "Competition, Contracts and Electricity Markets: A New Perspective," Post-Print hal-00772780, HAL.
    7. Brunekreeft, Gert, 2015. "Network unbundling and flawed coordination: Experience from the electricity sector," Utilities Policy, Elsevier, vol. 34(C), pages 11-18.
    8. Ropenus, Stephanie & Jacobsen, Henrik Klinge & Schröder, Sascha Thorsten, 2011. "Network regulation and support schemes – How policy interactions affect the integration of distributed generation," Renewable Energy, Elsevier, vol. 36(7), pages 1949-1956.
    9. Agrell, Per J. & Bogetoft, Peter & Mikkers, Misja, 2013. "Smart-grid investments, regulation and organization," Energy Policy, Elsevier, vol. 52(C), pages 656-666.
    10. G. Brunekreeft & E. Ehlers, 2006. "Ownership Unbundling of Electricity Distribution Networks and Distributed Generation," Competition and Regulation in Network Industries, Intersentia, vol. 7(1), pages 63-87, March.
    11. Pollitt, Michael G., 2012. "Lessons from the history of independent system operators in the energy sector," Energy Policy, Elsevier, vol. 47(C), pages 32-48.
    12. Drew Fudenberg & Jean Tirole, 1985. "Preemption and Rent Equalization in the Adoption of New Technology," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(3), pages 383-401.
    13. Nele Friedrichsen, 2015. "Governing smart grids: the case for an independent system operator," European Journal of Law and Economics, Springer, vol. 39(3), pages 553-572, June.
    14. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    15. Höffler, Felix & Kranz, Sebastian, 2011. "Legal unbundling can be a golden mean between vertical integration and ownership separation," International Journal of Industrial Organization, Elsevier, vol. 29(5), pages 576-588, September.
    16. Joskow, Paul L, 1996. "Introducing Competition into Regulated Network Industries: From Hierarchies to Markets in Electricity," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 5(2), pages 341-382.
    17. Ramos, Ariana & De Jonghe, Cedric & Gómez, Virginia & Belmans, Ronnie, 2016. "Realizing the smart grid's potential: Defining local markets for flexibility," Utilities Policy, Elsevier, vol. 40(C), pages 26-35.
    18. de Joode, J. & Jansen, J.C. & van der Welle, A.J. & Scheepers, M.J.J., 2009. "Increasing penetration of renewable and distributed electricity generation and the need for different network regulation," Energy Policy, Elsevier, vol. 37(8), pages 2907-2915, August.
    19. Niesten, Eva, 2010. "Network investments and the integration of distributed generation: Regulatory recommendations for the Dutch electricity industry," Energy Policy, Elsevier, vol. 38(8), pages 4355-4362, August.
    20. Marius Buchmann, 2016. "Integrating Stakeholders into the Governance of Data Exchange from Smart Metering," Competition and Regulation in Network Industries, , vol. 17(2), pages 102-122, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmann, Marius, 2017. "Governance of data and information management in smart distribution grids: Increase efficiency by balancing coordination and competition," Utilities Policy, Elsevier, vol. 44(C), pages 63-72.
    2. Marius Buchmann, 2016. "Information Management in Smart Grids - Who Should Govern Information Management to Balance Between Coordination and Competition on the Distribution Grid Level?," Bremen Energy Working Papers 0022, Bremen Energy Research.
    3. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    4. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    5. Schittekatte, Tim & Meeus, Leonardo, 2020. "Flexibility markets: Q&A with project pioneers," Utilities Policy, Elsevier, vol. 63(C).
    6. Sajjad Solat & Farrokh Aminifar & Heidarali Shayanfar, 2023. "Changing the regulations for regulating the changes: From distribution system operator (DSO) to electricity distribution stakeholders’ organization (EDSO)," Energy & Environment, , vol. 34(4), pages 830-854, June.
    7. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    8. Pedro H. Perico E Santos & Olivier Massol, 2022. "Electricity Distribution Systems in Europe : An Overview of Contemporary Regulatory Challenges," Working Papers hal-03897936, HAL.
    9. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    10. Chu, Yin & Chang, Chun-Ping, 2020. "Vertical separation of transmission control and market efficiency in the wholesale electricity market," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    11. Guillermo Ivan Pereira & Patrícia Pereira Silva & Deborah Soule, 2018. "Policy-adaptation for a smarter and more sustainable EU electricity distribution industry: a foresight analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 231-267, December.
    12. Blokhuis, Erik & Brouwers, Bart & van der Putten, Eric & Schaefer, Wim, 2011. "Peak loads and network investments in sustainable energy transitions," Energy Policy, Elsevier, vol. 39(10), pages 6220-6233, October.
    13. Cambini, Carlo & Congiu, Raffaele & Jamasb, Tooraj & Llorca, Manuel & Soroush, Golnoush, 2020. "Energy Systems Integration: Implications for public policy," Energy Policy, Elsevier, vol. 143(C).
    14. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    15. Darius Corbier & Frédéric Gonand & Marie Bessec, 2015. "Impacts of decentralised power generation on distribution networks: a statistical typology of European countries," Working Papers 1509, Chaire Economie du climat.
    16. Theo Dronne & Fabien Roques & Marcelo Saguan, 2021. "Local Flexibility Markets for Distribution Network Congestion-Management in Center-Western Europe: Which Design for Which Needs?," Energies, MDPI, vol. 14(14), pages 1-18, July.
    17. Biancardi, Andrea & Di Castelnuovo, Matteo & Staffell, Iain, 2021. "A framework to evaluate how European Transmission System Operators approach innovation," Energy Policy, Elsevier, vol. 158(C).
    18. Sugimoto, Kota, 2019. "Does transmission unbundling increase wind power generation in the United States?," Energy Policy, Elsevier, vol. 125(C), pages 307-316.
    19. Agrell, Per J. & Bogetoft, Peter & Mikkers, Misja, 2013. "Smart-grid investments, regulation and organization," Energy Policy, Elsevier, vol. 52(C), pages 656-666.
    20. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).

    More about this item

    Keywords

    local congestion market; congestion management; regulation; unbundling; discrimination;
    All these keywords.

    JEL classification:

    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • L52 - Industrial Organization - - Regulation and Industrial Policy - - - Industrial Policy; Sectoral Planning Methods
    • L - Industrial Organization
    • L97 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Utilities: General
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bei:00bewp:0031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marius Buchmann (email available below). General contact details of provider: http://bremen-energy-research.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.