[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/baf/cbafwp/cbafwp23200.html
   My bibliography  Save this paper

Blended Identification in Structural VARs

Author

Listed:
  • Andrea Carriero
  • Massimiliano Marcellino
  • Tommaso Tornese
Abstract
We propose a blended approach which combines identification via heteroskedasticity with the widely used methods of sign restrictions, narrative restrictions, and external instruments. Since heteroskedasticity in the reduced form can be exploited to point identify a set of orthogonal shocks, its use results in a sharp reduction of the potentially large identified sets stemming from the typical approaches. Conversely, the identifying information in the form of sign and narrative restrictions or external instruments can prove necessary when the conditions for point identification through heteroskedasticity are not met and offers a natural solution to the labeling problem inherent in purely statistical identification strategies. As a result, we argue that blending these methods together resolves their respective key issues and leverages their advantages, which allows to sharpen identification. We illustrate the blending approach in an artificial data experiment first, and then apply it to several examples taken from recent and influential literature. Specifically, we consider labour market shocks, oil market shocks, monetary and fiscal policy shocks, and find that their effects can be rather different from what previously obtained with simpler identification strategies.

Suggested Citation

  • Andrea Carriero & Massimiliano Marcellino & Tommaso Tornese, 2023. "Blended Identification in Structural VARs," BAFFI CAREFIN Working Papers 23200, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
  • Handle: RePEc:baf:cbafwp:cbafwp23200
    as

    Download full text from publisher

    File URL: https://repec.unibocconi.it/baffic/baf/papers/cbafwp23200.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Baumeister, Christiane & Hamilton, James D., 2018. "Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 48-65.
    2. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    3. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
    4. Daniel J Lewis, 2021. "Identifying Shocks via Time-Varying Volatility [First Order Autoregressive Processes and Strong Mixing]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(6), pages 3086-3124.
    5. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    6. Baumeister, Christiane & Hamilton, James, 2018. "Inference in Structural Vector Autoregressions When the Identifying Assumptions are Not Fully Believed: Re-evaluating the Role," CEPR Discussion Papers 12911, C.E.P.R. Discussion Papers.
    7. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    8. Daniel J. Lewis, 2022. "Robust Inference in Models Identified via Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 104(3), pages 510-524, May.
    9. Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
    10. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    11. repec:zbw:bofrdp:2018_014 is not listed on IDEAS
    12. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
    2. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    3. Knut Are Aastveit & Hilde C. Bjørnland & Jamie L. Cross, 2023. "Inflation Expectations and the Pass-Through of Oil Prices," The Review of Economics and Statistics, MIT Press, vol. 105(3), pages 733-743, May.
    4. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
    5. Rubaszek, Michał & Szafranek, Karol & Uddin, Gazi Salah, 2021. "The dynamics and elasticities on the U.S. natural gas market. A Bayesian Structural VAR analysis," Energy Economics, Elsevier, vol. 103(C).
    6. Kilian, Lutz, 2022. "Facts and fiction in oil market modeling," Energy Economics, Elsevier, vol. 110(C).
    7. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    8. Baumeister, Christiane & Hamilton, James D., 2020. "Drawing conclusions from structural vector autoregressions identified on the basis of sign restrictions," Journal of International Money and Finance, Elsevier, vol. 109(C).
    9. Martin Geiger & Jochen Güntner, 2019. "How are oil supply shocks transmitted to the U.S. economy?," Economics working papers 2019-13, Department of Economics, Johannes Kepler University Linz, Austria.
    10. Szafranek, Karol & Szafrański, Grzegorz & Leszczyńska-Paczesna, Agnieszka, 2024. "Inflation returns. Revisiting the role of external and domestic shocks with Bayesian structural VAR," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 789-810.
    11. Matthew Read, 2022. "The Unit-effect Normalisation in Set-identified Structural Vector Autoregressions," RBA Research Discussion Papers rdp2022-04, Reserve Bank of Australia.
    12. Michał Rubaszek & Karol Szafranek, 2025. "The European energy crisis and the US natural gas market dynamics: a structural VAR investigation," International Economics and Economic Policy, Springer, vol. 22(1), pages 1-22, February.
    13. Karol Szafranek & Michał Rubaszek, 2024. "The European energy crisis and the US natural gas market dynamics. A structural VAR investigation," KAE Working Papers 2024-099, Warsaw School of Economics, Collegium of Economic Analysis.
    14. Marek A. Dąbrowski & Łukasz Kwiatkowski & Justyna Wróblewska, 2020. "Sources of Real Exchange Rate Variability in Central and Eastern European Countries: Evidence from Structural Bayesian MSH-VAR Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(4), pages 369-412, December.
    15. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    16. Gong, Xiao-Li & Liu, Jian-Min & Xiong, Xiong & Zhang, Wei, 2021. "The dynamic effects of international oil price shocks on economic fluctuation," Resources Policy, Elsevier, vol. 74(C).
    17. Sam Ouliaris & Adrian Pagan, 2022. "Three Basic Issues that Arise when Using Informational Restrictions in SVARs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(1), pages 1-20, February.
    18. Baumeister, Christiane & Hamilton, James D., 2021. "Reprint: Drawing conclusions from structural vector autoregressions identified on the basis of sign restrictions," Journal of International Money and Finance, Elsevier, vol. 114(C).
    19. Geiger, Martin & Scharler, Johann, 2019. "How do consumers assess the macroeconomic effects of oil price fluctuations? Evidence from U.S. survey data," Journal of Macroeconomics, Elsevier, vol. 62(C).
    20. Martin Geiger & Johann Scharler, 2021. "How Do People Interpret Macroeconomic Shocks? Evidence from U.S. Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 813-843, June.

    More about this item

    Keywords

    SVAR; Identification; Heteroskedasticity; Sign restrictions; Proxy variables;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:baf:cbafwp:cbafwp23200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michela Pozzi (email available below). General contact details of provider: https://edirc.repec.org/data/cbbocit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.