[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/14-12.html
   My bibliography  Save this paper

A simple bootstrap method for constructing nonparametric confidence bands for functions

Author

Listed:
  • Peter Hall
  • Joel L. Horowitz
Abstract
Standard approaches to constructing nonparametric confidence bands for functions are frustrated by the impact of bias, which generally is not estimated consistently when using the bootstrap and conventionally smoothed function estimators. To overcome this problem it is common practice to either undersmooth, so as to reduce the impact of bias, or oversmooth, and thereby introduce an explicit or implicit bias estimator. However, these approaches, and others based on nonstandard smoothing methods, complicate the process of inference, for example by requiring the choice of new, unconventional smoothing parameters and, in the case of undersmoothing, producing relatively wide bands. In this paper we suggest a new approach, which exploits to our advantage one of the difficulties that, in the past, has prevented an attractive solution to this problem - the fact that the standard bootstrap bias estimator suffers from relatively high-frequency stochastic error. The high frequency, together with a technique based on quantiles, can be exploited to dampen down the stochastic error term, leading to relatively narrow, simple-to-construct confidence bands.

Suggested Citation

  • Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 14/12, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:14/12
    DOI: 10.1920/wp.cem.2012.1412
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP1412.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2012.1412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hall, Peter & Titterington, D. M., 1988. "On confidence bands in nonparametric density estimation and regression," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 228-254, October.
    2. Y. Xia, 1998. "Bias‐corrected confidence bands in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 797-811.
    3. Cai, T. Tony & Levine, Michael & Wang, Lie, 2009. "Variance function estimation in multivariate nonparametric regression with fixed design," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 126-136, January.
    4. Tiejun Tong & Yuedong Wang, 2005. "Estimating residual variance in nonparametric regression using least squares," Biometrika, Biometrika Trust, vol. 92(4), pages 821-830, December.
    5. Axel Munk & Nicolai Bissantz & Thorsten Wagner & Gudrun Freitag, 2005. "On difference‐based variance estimation in nonparametric regression when the covariate is high dimensional," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 19-41, February.
    6. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    7. H. Dette & A. Munk & T. Wagner, 1998. "Estimating the variance in nonparametric regression—what is a reasonable choice?," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 751-764.
    8. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. McMurry, Timothy L. & Politis, Dimitris N., 2008. "Bootstrap confidence intervals in nonparametric regression with built-in bias correction," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2463-2469, October.
    10. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    2. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Liitiäinen, Elia & Corona, Francesco & Lendasse, Amaury, 2010. "Residual variance estimation using a nearest neighbor statistic," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 811-823, April.
    5. Jingxin Zhao & Heng Peng & Tao Huang, 2018. "Variance estimation for semiparametric regression models by local averaging," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 453-476, June.
    6. P. G. Ferrario & H. Walk, 2012. "Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbours," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1019-1039, December.
    7. Pierre Bellec, 2015. "Optimal bounds for aggregation of affine estimators," Working Papers 2015-06, Center for Research in Economics and Statistics.
    8. Eckhard Liebscher, 2012. "Model checks for parametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 132-155, March.
    9. Cai, T. Tony & Levine, Michael & Wang, Lie, 2009. "Variance function estimation in multivariate nonparametric regression with fixed design," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 126-136, January.
    10. Ieva Axt & Roland Fried, 2020. "On variance estimation under shifts in the mean," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 417-457, September.
    11. Hall, Peter & Yatchew, Adonis, 2010. "Nonparametric least squares estimation in derivative families," Journal of Econometrics, Elsevier, vol. 157(2), pages 362-374, August.
    12. Levine, Michael, 2015. "Minimax rate of convergence for an estimator of the functional component in a semiparametric multivariate partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 283-290.
    13. Wang, WenWu & Yu, Ping, 2017. "Asymptotically optimal differenced estimators of error variance in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 125-143.
    14. Zhijian Li & Wei Lin, 2020. "Efficient error variance estimation in non‐parametric regression," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 467-484, December.
    15. Li Cai & Suojin Wang, 2021. "Global statistical inference for the difference between two regression mean curves with covariates possibly partially missing," Statistical Papers, Springer, vol. 62(6), pages 2573-2602, December.
    16. Yuanyuan Zhang & Lijian Yang, 2018. "A smooth simultaneous confidence band for correlation curve," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 247-269, June.
    17. Li Cai & Lijian Yang, 2015. "A smooth simultaneous confidence band for conditional variance function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 632-655, September.
    18. Paola Gloria Ferrario, 2018. "Partitioning estimation of local variance based on nearest neighbors under censoring," Statistical Papers, Springer, vol. 59(2), pages 423-447, June.
    19. WenWu Wang & Lu Lin & Li Yu, 2017. "Optimal variance estimation based on lagged second-order difference in nonparametric regression," Computational Statistics, Springer, vol. 32(3), pages 1047-1063, September.
    20. Chen Zhong & Lijian Yang, 2021. "Simultaneous confidence bands for comparing variance functions of two samples based on deterministic designs," Computational Statistics, Springer, vol. 36(2), pages 1197-1218, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:14/12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.