[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.0032.html
   My bibliography  Save this paper

When roll-overs do not qualify as num\'eraire: bond markets beyond short rate paradigms

Author

Listed:
  • Irene Klein
  • Thorsten Schmidt
  • Josef Teichmann
Abstract
We investigate default-free bond markets where the standard relationship between a possibly existing bank account process and the term structure of bond prices is broken, i.e. the bank account process is not a valid num\'eraire. We argue that this feature is not the exception but rather the rule in bond markets when starting with, e.g., terminal bonds as num\'eraires. Our setting are general c\`adl\`ag processes as bond prices, where we employ directly methods from large financial markets. Moreover, we do not restrict price process to be semimartingales, which allows for example to consider markets driven by fractional Brownian motion. In the core of the article we relate the appropriate no arbitrage assumptions (NAFL), i.e. no asymptotic free lunch, to the existence of an equivalent local martingale measure with respect to the terminal bond as num\'eraire, and no arbitrage opportunities of the first kind (NAA1) to the existence of a supermartingale deflator, respectively. In all settings we obtain existence of a generalized bank account as a limit of convex combinations of roll-over bonds. Additionally we provide an alternative definition of the concept of a num\'eraire, leading to a possibly interesting connection to bubbles. If we can construct a bank account process through roll-overs, we can relate the impossibility of taking the bank account as num\'eraire to liquidity effects. Here we enter endogenously the arena of multiple yield curves. The theory is illustrated by several examples.

Suggested Citation

  • Irene Klein & Thorsten Schmidt & Josef Teichmann, 2013. "When roll-overs do not qualify as num\'eraire: bond markets beyond short rate paradigms," Papers 1310.0032, arXiv.org.
  • Handle: RePEc:arx:papers:1310.0032
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.0032
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivar Ekeland & Erik Taflin, 2003. "A theory of bond portfolios," Papers math/0301278, arXiv.org, revised May 2005.
    2. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    3. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    4. repec:dau:papers:123456789/6041 is not listed on IDEAS
    5. Y.M. Kabanov & D.O. Kramkov, 1998. "Asymptotic arbitrage in large financial markets," Finance and Stochastics, Springer, vol. 2(2), pages 143-172.
    6. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    7. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    8. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    9. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harms, Philipp & Stefanovits, David, 2019. "Affine representations of fractional processes with applications in mathematical finance," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1185-1228.
    2. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    3. Christa Cuchiero & Irene Klein & Josef Teichmann, 2014. "A new perspective on the fundamental theorem of asset pricing for large financial markets," Papers 1412.7562, arXiv.org, revised Oct 2023.
    4. Zdzisław Brzeźniak & Tayfun Kok, 2018. "Stochastic evolution equations in Banach spaces and applications to the Heath–Jarrow–Morton–Musiela equations," Finance and Stochastics, Springer, vol. 22(4), pages 959-1006, October.
    5. Claudio Fontana & Thorsten Schmidt, 2016. "General dynamic term structures under default risk," Papers 1603.03198, arXiv.org, revised Nov 2017.
    6. Frank Gehmlich & Thorsten Schmidt, 2014. "Dynamic Defaultable Term Structure Modelling beyond the Intensity Paradigm," Papers 1411.4851, arXiv.org, revised Jul 2015.
    7. Thomas Krabichler & Josef Teichmann, 2020. "A constraint-based notion of illiquidity," Papers 2004.12394, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    2. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    5. repec:uts:finphd:40 is not listed on IDEAS
    6. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    7. Soumik Pal & Philip Protter, 2007. "Analysis of continuous strict local martingales via h-transforms," Papers 0711.1136, arXiv.org, revised Jun 2010.
    8. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    9. Jouini, Elyes & Napp, Clotilde & Schachermayer, Walter, 2005. "Arbitrage and state price deflators in a general intertemporal framework," Journal of Mathematical Economics, Elsevier, vol. 41(6), pages 722-734, September.
    10. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    11. Miklós Rásonyi, 2004. "Arbitrage pricing theory and risk-neutral measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(2), pages 109-123, December.
    12. Alexander Vervuurt, 2015. "Topics in Stochastic Portfolio Theory," Papers 1504.02988, arXiv.org.
    13. Pal, Soumik & Protter, Philip, 2010. "Analysis of continuous strict local martingales via h-transforms," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1424-1443, August.
    14. Constantinos Kardaras, 2009. "Finitely additive probabilities and the Fundamental Theorem of Asset Pricing," Papers 0911.5503, arXiv.org.
    15. Sergio Pulido, 2010. "The fundamental theorem of asset pricing, the hedging problem and maximal claims in financial markets with short sales prohibitions," Papers 1012.3102, arXiv.org, revised Jan 2014.
    16. A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    17. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Post-Print hal-03898927, HAL.
    18. repec:dau:papers:123456789/12663 is not listed on IDEAS
    19. Martin Herdegen & Martin Schweizer, 2018. "Semi‐efficient valuations and put‐call parity," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1061-1106, October.
    20. Yukihiro Tsuzuki, 2023. "Pitman's Theorem, Black-Scholes Equation, and Derivative Pricing for Fundraisers," Papers 2303.13956, arXiv.org.
    21. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    22. Constantinides, George M & Duffie, Darrell, 1996. "Asset Pricing with Heterogeneous Consumers," Journal of Political Economy, University of Chicago Press, vol. 104(2), pages 219-240, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.0032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.