[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0912.0372.html
   My bibliography  Save this paper

Variance Optimal Hedging for continuous time processes with independent increments and applications

Author

Listed:
  • St'ephane Goutte

    (LAGA, OPTEA)

  • Nadia Oudjane

    (LAGA)

  • Francesco Russo

    (LAGA, MathFi, CERMICS)

Abstract
For a large class of vanilla contingent claims, we establish an explicit F\"ollmer-Schweizer decomposition when the underlying is a process with independent increments (PII) and an exponential of a PII process. This allows to provide an efficient algorithm for solving the mean variance hedging problem. Applications to models derived from the electricity market are performed.

Suggested Citation

  • St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2009. "Variance Optimal Hedging for continuous time processes with independent increments and applications," Papers 0912.0372, arXiv.org.
  • Handle: RePEc:arx:papers:0912.0372
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0912.0372
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    3. Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
    4. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2012. "Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets," Papers 1205.4089, arXiv.org.
    5. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    6. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    7. Takuji Arai, 2005. "An extension of mean-variance hedging to the discontinuous case," Finance and Stochastics, Springer, vol. 9(1), pages 129-139, January.
    8. Friedrich Hubalek & Jan Kallsen & Leszek Krawczyk, 2006. "Variance-optimal hedging for processes with stationary independent increments," Papers math/0607112, arXiv.org.
    9. Arai, Takuji, 2005. "Some properties of the variance-optimal martingale measure for discontinuous semimartingales," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 163-170, September.
    10. Damir Filipović & Stefan Tappe, 2008. "Existence of Lévy term structure models," Finance and Stochastics, Springer, vol. 12(1), pages 83-115, January.
    11. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    12. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2008. "Analysis of Fourier transform valuation formulas and applications," Papers 0809.3405, arXiv.org, revised Sep 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2012. "Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets," Papers 1205.4089, arXiv.org.
    2. René Aïd & Luciano Campi & Nicolas Langrené, 2010. "A structural risk-neutral model for pricing and hedging power derivatives," Working Papers hal-00525800, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2013. "Variance optimal hedging for continuous time additive processes and applications," Papers 1302.1965, arXiv.org.
    2. Ewald, Christian-Oliver & Nawar, Roy & Siu, Tak Kuen, 2013. "Minimal variance hedging of natural gas derivatives in exponential Lévy models: Theory and empirical performance," Energy Economics, Elsevier, vol. 36(C), pages 97-107.
    3. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    4. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2012. "Variance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets," Papers 1205.4089, arXiv.org.
    5. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    6. Farzad Alavi Fard & Firmin Doko Tchatoka & Sivagowry Sriananthakumar, 2021. "Maximum Entropy Evaluation of Asymptotic Hedging Error under a Generalised Jump-Diffusion Model," JRFM, MDPI, vol. 14(3), pages 1-19, February.
    7. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    8. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    9. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    10. Cheridito, Patrick & Horst, Ulrich & Kupper, Michael & Pirvu, Traian A., 2011. "Equilibrium pricing in incomplete markets under translation invariant preferences," SFB 649 Discussion Papers 2011-083, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Panagiotis Christodoulou & Nils Detering & Thilo Meyer-Brandis, 2018. "Local Risk-Minimization With Multiple Assets Under Illiquidity With Applications In Energy Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-44, June.
    12. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Maren Diane Schmeck, 2016. "Pricing options on forwards in energy markets: the role of mean reversion's speed," Papers 1602.03402, arXiv.org.
    14. Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
    15. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Konrad Gajewski & Sebastian Ferrando & Pablo Olivares, 2020. "Pricing Energy Contracts under Regime Switching Time-Changed models," Papers 2005.14361, arXiv.org.
    17. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    18. Rafael Mendoza-Arriaga & Vadim Linetsky, 2014. "Time-changed CIR default intensities with two-sided mean-reverting jumps," Papers 1403.5402, arXiv.org.
    19. C. Neri & L. Schneider, 2012. "The Impact of the Prior Density on a Minimum Relative Entropy Density: A Case Study with SPX Option Data," Papers 1201.2616, arXiv.org, revised Sep 2013.
    20. Che Guo & Xingchun Wang, 2022. "Pricing vulnerable options under correlated skew Brownian motions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 852-867, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.0372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.