(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2010050.html
   My bibliography  Save this paper

How to measure the impact of environmental factors in a nonparametric production model?

Author

Listed:
  • Badin, Luiza
  • Daraio, Cinzia
  • Simar, Leopold
Abstract
The measurement of technical efficiency allows managers and policy makers to enhance existing differentials and potential improvements across a sample of analyzed units. The next step involves relating the obtained efficiency estimates to some external or environmental factors which may influence the production process, affect the performances and explain the efficiency differentials. Recently introduced conditional efficiency measures (Daraio and Simar, 2005, 2007a,b), including conditional FDH, conditional DEA, conditional order-m and conditional order-α, have rapidly developed into a useful tool to explore the impact of exogenous factors on the performance of Decision Making Units in a nonparametric framework. This paper contributes in a twofold fashion. It first extends previous studies by showing that a careful analysis of both full and partial conditional measures allows the disentangling of the impact of environmental factors on the production process in its two components: impact on the attainable set and/or impact on the distribution of the efficiency scores. The authors investigate these interrelationships, both from an individual and a global perspective. Second, this paper examines the impact of environmental factors on the production process in a new two-stage type approach but using conditional measures to avoid the flaws of the traditional two-stage analysis. This novel approach also provides a measure of inefficiency whitened from the main effect of the environmental factors allowing a ranking of units according to their managerial efficiency, even when facing heterogeneous environmental conditions. The paper includes an illustration on simulated samples and a real data set from the banking industry.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Badin, Luiza & Daraio, Cinzia & Simar, Leopold, 2010. "How to measure the impact of environmental factors in a nonparametric production model?," LIDAM Discussion Papers ISBA 2010050, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2010050
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Léopold Simar & Paul Wilson, 2011. "Two-stage DEA: caveat emptor," Journal of Productivity Analysis, Springer, vol. 36(2), pages 205-218, October.
    2. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, September.
    3. Léopold Simar & Paul Wilson, 2011. "Inference by the m out of n bootstrap in nonparametric frontier models," Journal of Productivity Analysis, Springer, vol. 36(1), pages 33-53, August.
    4. Ziegelmann, Flavio A., 2002. "Nonparametric Estimation Of Volatility Functions: The Local Exponential Estimator," Econometric Theory, Cambridge University Press, vol. 18(4), pages 985-991, August.
    5. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    6. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
    7. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    8. Cinzia Daraio & Léopold Simar, 2007. "Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach," Journal of Productivity Analysis, Springer, vol. 28(1), pages 13-32, October.
    9. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    10. Badin, Luiza & Daraio, Cinzia & Simar, Léopold, 2010. "Optimal bandwidth selection for conditional efficiency measures: A data-driven approach," European Journal of Operational Research, Elsevier, vol. 201(2), pages 633-640, March.
    11. Daouia, Abdelaati & Gijbels, Irène, 2011. "Robustness and inference in nonparametric partial frontier modeling," Journal of Econometrics, Elsevier, vol. 161(2), pages 147-165, April.
    12. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    13. Rajiv D. Banker & Richard C. Morey, 1986. "The Use of Categorical Variables in Data Envelopment Analysis," Management Science, INFORMS, vol. 32(12), pages 1613-1627, December.
    14. Aly, Hassan Y, et al, 1990. "Technical, Scale, and Allocative Efficiencies in U.S. Banking: An Empirical Investigation," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 211-218, May.
    15. Zha, Yong & Liang, Liang, 2010. "Two-stage cooperation model with input freely distributed among the stages," European Journal of Operational Research, Elsevier, vol. 205(2), pages 332-338, September.
    16. Jeong, Seok-Oh & Simar, Léopold, 2006. "Linearly interpolated FDH efficiency score for nonconvex frontiers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2141-2161, November.
    17. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    18. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(6), pages 855-877, December.
    19. Leibenstein, Harvey, 1979. "A Branch of Economics is Missing: Micro-Micro Theory," Journal of Economic Literature, American Economic Association, vol. 17(2), pages 477-502, June.
    20. Seok-Oh Jeong & Byeong Park & Léopold Simar, 2010. "Nonparametric conditional efficiency measures: asymptotic properties," Annals of Operations Research, Springer, vol. 173(1), pages 105-122, January.
    21. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    22. Daraio, Cinzia & Simar, Leopold, 2006. "A robust nonparametric approach to evaluate and explain the performance of mutual funds," European Journal of Operational Research, Elsevier, vol. 175(1), pages 516-542, November.
    23. repec:hal:journl:peer-00796744 is not listed on IDEAS
    24. Chen, Yao & Liang, Liang & Zhu, Joe, 2009. "Equivalence in two-stage DEA approaches," European Journal of Operational Research, Elsevier, vol. 193(2), pages 600-604, March.
    25. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    26. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    27. Abdelaati Daouia & Irène Gijbels, 2011. "Robustness and inference in nonparametric partial-frontier modeling," Post-Print hal-00796744, HAL.
    28. Leibenstein, Harvey & Maital, Shlomo, 1992. "Empirical Estimation and Partitioning of X-Inefficiency: A Data-Envelopment Approach," American Economic Review, American Economic Association, vol. 82(2), pages 428-433, May.
    29. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    30. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    31. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luiza Bădin & Cinzia Daraio & Léopold Simar, 2014. "Explaining inefficiency in nonparametric production models: the state of the art," Annals of Operations Research, Springer, vol. 214(1), pages 5-30, March.
    2. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    3. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    4. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    5. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2019. "A bootstrap approach for bandwidth selection in estimating conditional efficiency measures," European Journal of Operational Research, Elsevier, vol. 277(2), pages 784-797.
    6. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    7. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    8. López-Torres, Laura & Johnes, Jill & Elliott, Caroline & Polo, Cristina, 2021. "The effects of competition and collaboration on efficiency in the UK independent school sector," Economic Modelling, Elsevier, vol. 96(C), pages 40-53.
    9. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "Public sector transparency and countries’ environmental performance: A nonparametric analysis," Resource and Energy Economics, Elsevier, vol. 38(C), pages 19-37.
    10. Frédérique Fève & Jean-Pierre Florens & Léopold Simar, 2023. "Proportional incremental cost probability functions and their frontiers," Empirical Economics, Springer, vol. 64(6), pages 2721-2756, June.
    11. Cordero, Jose M. & Polo, Cristina & Santín, Daniel & Simancas, Rosa, 2018. "Efficiency measurement and cross-country differences among schools: A robust conditional nonparametric analysis," Economic Modelling, Elsevier, vol. 74(C), pages 45-60.
    12. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    13. Jose M. Cordero & Francisco Pedraja-Chaparro & Elsa C. Pisaflores & Cristina Polo, 2017. "Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach," Journal of Productivity Analysis, Springer, vol. 48(1), pages 1-24, August.
    14. Simar, Léopold & Vanhems, Anne & Van Keilegom, Ingrid, 2016. "Unobserved heterogeneity and endogeneity in nonparametric frontier estimation," Journal of Econometrics, Elsevier, vol. 190(2), pages 360-373.
    15. Cordero, José Manuel & Alonso-Morán, Edurne & Nuño-Solinis, Roberto & Orueta, Juan F. & Arce, Regina Sauto, 2015. "Efficiency assessment of primary care providers: A conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 240(1), pages 235-244.
    16. Halkos, George & Tzeremes, Nickolaos, 2012. "Regional economic growth and environmental efficiency in greenhouse emissions: A conditional directional distance function approach," MPRA Paper 40015, University Library of Munich, Germany.
    17. Bjørndal, Endre & Bjørndal, Mette & Cullmann, Astrid & Nieswand, Maria, 2018. "Finding the right yardstick: Regulation of electricity networks under heterogeneous environments," European Journal of Operational Research, Elsevier, vol. 265(2), pages 710-722.
    18. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    19. Polemis, Michael L. & Tzeremes, Nickolaos G., 2019. "Competitive conditions and sectors’ productive efficiency: A conditional non-parametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1104-1118.
    20. Daraio, Cinzia & Simar, Léopold, 2014. "Directional distances and their robust versions: Computational and testing issues," European Journal of Operational Research, Elsevier, vol. 237(1), pages 358-369.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2010050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.