[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ags/iaae15/211929.html
   My bibliography  Save this paper

Process-based simulation of regional agricultural supply functions in Southwestern Germany using farm-level and agent-based models

Author

Listed:
  • Troost, Christian
  • Berger, Thomas
Abstract
In combination with crop growth models, farm-level models allow an in-depth, process-based analysis of farmer adaptation to climate change and agricultural policy. Evaluated for all farms in an area and extended by interactions, farm-level models become agent-based models that allow simulating aggregate regional production and structural change. Confined to a local or regional scope, however, they cannot directly incorporate price feedbacks that play out at global scale. In this contribution, we use experimental designs to evaluate a non-connected agent-based model for the full space of potential future price developments. We discuss and compare the use of standard regression analysis and non-parametric, automatic methods (MARS and Kriging) to summarize supply behavior over the simulated price ranges. Estimated supply functions constitute a surrogate model for the original agent-based model and could be used to iterate detailed regional analysis with national or global market models in an efficient way.

Suggested Citation

  • Troost, Christian & Berger, Thomas, 2015. "Process-based simulation of regional agricultural supply functions in Southwestern Germany using farm-level and agent-based models," 2015 Conference, August 9-14, 2015, Milan, Italy 211929, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae15:211929
    DOI: 10.22004/ag.econ.211929
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/211929/files/Troost-Process-based%20simulation%20of%20regional%20supply%20functions%20using%20farm-level%20and%20agent-based%20models-566.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.211929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John M. Antle & Susan M. Capalbo, 2001. "Econometric-Process Models for Integrated Assessment of Agricultural Production Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 389-401.
    2. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    3. Thomas Berger & Christian Troost, 2014. "Agent-based Modelling of Climate Adaptation and Mitigation Options in Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(2), pages 323-348, June.
    4. Gibbons, J.M. & Wood, A.T.A. & Craigon, J. & Ramsden, S.J. & Crout, N.M.J., 2010. "Semi-automatic reduction and upscaling of large models: A farm management example," Ecological Modelling, Elsevier, vol. 221(4), pages 590-598.
    5. Berger, Thomas & Schreinemachers, Pepijn & Woelcke, Johannes, 2006. "Multi-agent simulation for the targeting of development policies in less-favored areas," Agricultural Systems, Elsevier, vol. 88(1), pages 28-43, April.
    6. Aurbacher, Joachim & Parker, Phillip S. & Calberto Sánchez, Germán A. & Steinbach, Jennifer & Reinmuth, Evelyn & Ingwersen, Joachim & Dabbert, Stephan, 2013. "Influence of climate change on short term management of field crops – A modelling approach," Agricultural Systems, Elsevier, vol. 119(C), pages 44-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yamashita, Ryohei & Hoshino, Satoshi, 2018. "Development of an agent-based model for estimation of agricultural land preservation in rural Japan," Agricultural Systems, Elsevier, vol. 164(C), pages 264-276.
    2. Winter, Eva & Grovermann, Christian & Aurbacher, Joachim & Messmer, Monika M., 2021. "Analysing Interventions in the Seed and Breeding System for Organic Carrot Seed Use in Germany - a Multi-Agent Value Chain Approach," 2021 Conference, August 17-31, 2021, Virtual 314959, International Association of Agricultural Economists.
    3. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    2. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    3. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    4. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    5. Rianne Duinen & Tatiana Filatova & Wander Jager & Anne Veen, 2016. "Going beyond perfect rationality: drought risk, economic choices and the influence of social networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 57(2), pages 335-369, November.
    6. Ran Sun & James Nolan & Suren Kulshreshtha, 2022. "Agent-based modeling of policy induced agri-environmental technology adoption," SN Business & Economics, Springer, vol. 2(8), pages 1-26, August.
    7. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Huang, Shiyang & Hu, Guiping, 2018. "Biomass supply contract pricing and environmental policy analysis: A simulation approach," Energy, Elsevier, vol. 145(C), pages 557-566.
    9. Thomas Berger & Christian Troost & Tesfamicheal Wossen & Evgeny Latynskiy & Kindie Tesfaye & Sika Gbegbelegbe, 2017. "Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agent-based simulation results for Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 693-706, November.
    10. Cho, Seojin & Antle, John M., 2019. "Impact of Domestic and Trade Policies on Adoption of a Biofuel Crop in Dryland Wheat-Based Farming Systems in U.S. Pacific Northwest," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 290920, Agricultural and Applied Economics Association.
    11. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    12. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    15. John M. Antle & Roberto O. Valdivia, 2006. "Modelling the supply of ecosystem services from agriculture: a minimum‐data approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 1-15, March.
    16. Zitrou, Athena & Bedford, Tim & Walls, Lesley, 2016. "A model for availability growth with application to new generation offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 83-94.
    17. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    18. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    19. Msangi, Siwa & Howitt, Richard E., 2006. "Estimating Disaggregate Production Functions: An Application to Northern Mexico," 2006 Annual meeting, July 23-26, Long Beach, CA 21080, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.

    More about this item

    Keywords

    Agribusiness; International Development;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae15:211929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.