[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aah/create/2022-04.html
   My bibliography  Save this paper

Inference on the dimension of the nonstationary subspace in functional time series

Author

Listed:
  • Morten Ørregaard Nielsen

    (Aarhus University and CREATES)

  • Wonk-ki Seo

    (University of Sydney)

  • Dakyung Seong

    (University of Sydney)

Abstract
We propose a statistical procedure to determine the dimension of the nonstationary subspace of cointegrated functional time series taking values in the Hilbert space of square-integrable functions defined on a compact interval. The procedure is based on sequential application of a proposed test for the dimension of the nonstationary subspace. To avoid estimation of the long-run covariance operator, our test is based on a variance ratio-type statistic. We derive the asymptotic null distribution and prove consistency of the test. Monte Carlo simulations show good performance of our test and provide evidence that it outperforms the existing testing procedure. We apply our methodology to three empirical examples: age-specific US employment rates, Australian temperature curves, and Ontario electricity demand.

Suggested Citation

  • Morten Ørregaard Nielsen & Wonk-ki Seo & Dakyung Seong, 2022. "Inference on the dimension of the nonstationary subspace in functional time series," CREATES Research Papers 2022-04, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2022-04
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/22/rp22_04.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Alexei Onatski & Chen Wang, 2018. "Alternative Asymptotics for Cointegration Tests in Large VARs," Econometrica, Econometric Society, vol. 86(4), pages 1465-1478, July.
    3. Zhang, Rongmao & Robinson, Peter & Yao, Qiwei, 2019. "Identifying cointegration by eigenanalysis," LSE Research Online Documents on Economics 87431, London School of Economics and Political Science, LSE Library.
    4. Nielsen, Morten Ørregaard, 2010. "Nonparametric cointegration analysis of fractional systems with unknown integration orders," Journal of Econometrics, Elsevier, vol. 155(2), pages 170-187, April.
    5. Nielsen, Morten Ørregaard, 2009. "A Powerful Test Of The Autoregressive Unit Root Hypothesis Based On A Tuning Parameter Free Statistic," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1515-1544, December.
    6. Aue, Alexander & Van Delft, Anne, 2017. "Testing for stationarity of functional time series in the frequency domain," LIDAM Discussion Papers ISBA 2017001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
    8. Mas, André, 2002. "Weak convergence for the covariance operators of a Hilbertian linear process," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 117-135, May.
    9. Ho, Mun S & Sorensen, Bent E, 1996. "Finding Cointegration Rank in High Dimensional Systems Using the Johansen Test: An Illustration Using Data Based Monte Carlo Simulations," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 726-732, November.
    10. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    11. Rongmao Zhang & Peter Robinson & Qiwei Yao, 2019. "Identifying Cointegration by Eigenanalysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 916-927, April.
    12. Chang, Yoosoon & Kim, Chang Sik & Park, Joon Y., 2016. "Nonstationarity in time series of state densities," Journal of Econometrics, Elsevier, vol. 192(1), pages 152-167.
    13. Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morten {O}rregaard Nielsen & Won-Ki Seo & Dakyung Seong, 2023. "Inference on common trends in functional time series," Papers 2312.00590, arXiv.org, revised May 2024.
    2. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    2. Gianluca Cubadda & Marco Mazzali, 2024. "The vector error correction index model: representation, estimation and identification," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.
    3. Morten {O}rregaard Nielsen & Won-Ki Seo & Dakyung Seong, 2023. "Inference on common trends in functional time series," Papers 2312.00590, arXiv.org, revised May 2024.
    4. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    5. Mehdi Hosseinkouchack & Uwe Hassler, 2016. "Powerful Unit Root Tests Free of Nuisance Parameters," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 533-554, July.
    6. Nielsen, Morten Ørregaard, 2010. "Nonparametric cointegration analysis of fractional systems with unknown integration orders," Journal of Econometrics, Elsevier, vol. 155(2), pages 170-187, April.
    7. Nielsen, Morten, 2008. "A Powerful Tuning Parameter Free Test of the Autoregressive Unit Root Hypothesis," Working Papers 08-05, Cornell University, Center for Analytic Economics.
    8. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    9. Al-Sadoon, Majid M., 2017. "A unifying theory of tests of rank," Journal of Econometrics, Elsevier, vol. 199(1), pages 49-62.
    10. Nielsen, Morten Ørregaard, 2009. "A Powerful Test Of The Autoregressive Unit Root Hypothesis Based On A Tuning Parameter Free Statistic," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1515-1544, December.
    11. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
    12. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
    13. Onatski, Alexei & Wang, Chen, 2019. "Extreme canonical correlations and high-dimensional cointegration analysis," Journal of Econometrics, Elsevier, vol. 212(1), pages 307-322.
    14. Smeekes, Stephan & Wijler, Etienne, 2021. "An automated approach towards sparse single-equation cointegration modelling," Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
    15. Dechert, Andreas, 2014. "Fraktionale Kointegrationsbeziehungen zwischen Euribor-Zinssätzen," W.E.P. - Würzburg Economic Papers 93, University of Würzburg, Department of Economics.
    16. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
    17. Eroğlu, Burak Alparslan & Göğebakan, Kemal Çağlar & Trokić, Mirza, 2018. "Powerful nonparametric seasonal unit root tests," Economics Letters, Elsevier, vol. 167(C), pages 75-80.
    18. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Inference in Non-stationary High-Dimensional VARs," Papers 2302.01434, arXiv.org, revised Sep 2023.
    19. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," LSE Research Online Documents on Economics 103830, London School of Economics and Political Science, LSE Library.
    20. Shintani, Mototsugu, 2001. "A simple cointegrating rank test without vector autoregression," Journal of Econometrics, Elsevier, vol. 105(2), pages 337-362, December.

    More about this item

    Keywords

    cointegration; functional data; nonstationarity; stochastic trends; variance ratio;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2022-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.