[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aah/create/2012-54.html
   My bibliography  Save this paper

Global Hemispheric Temperature Trends and Co–Shifting: A Shifting Mean Vector Autoregressive Analysis

Author

Listed:
  • Matthew T. Holt

    (University of Alabama, Department of Economics, Finance & Legal Studies)

  • Timo Teräsvirta

    (Aarhus University, Department of Economics and Management and CREATES)

Abstract
This paper examines trends in annual temperature data for the northern and southern hemisphere (1850-2010) by using variants of the shifting-mean autoregressive (SM-AR) model of González and Teräsvirta (2008). Univariate models are first fitted to each series by using the so called QuickShift methodology. Full information maximum likelihood (FIML) estimates of a bivariate system of temperature equations are then obtained. The system is then used to perform formal tests of co-system in the hemispheric series. The results show there is evidence of co-shifting in the temperature data, most notably since the early 1980s.

Suggested Citation

  • Matthew T. Holt & Timo Teräsvirta, 2012. "Global Hemispheric Temperature Trends and Co–Shifting: A Shifting Mean Vector Autoregressive Analysis," CREATES Research Papers 2012-54, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2012-54
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/12/rp12_54.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. González Andrés & Teräsvirta Timo, 2008. "Modelling Autoregressive Processes with a Shifting Mean," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-28, March.
    2. Søren Johansen, 2010. "The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration with an Application to Annual Mean Temperature and Sea Level," Discussion Papers 10-27, University of Copenhagen. Department of Economics.
    3. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    4. Barry K. Goodwin & Matthew T. Holt & Jeffrey P. Prestemon, 2011. "North American Oriented Strand Board Markets, Arbitrage Activity, and Market Price Dynamics: A Smooth Transition Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 993-1014.
    5. Stephen Leybourne & Paul Newbold & Dimitrios Vougas, 1998. "Unit roots and smooth transitions," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 83-97, January.
    6. Candelon, Bertrand & Lutkepohl, Helmut, 2001. "On the reliability of Chow-type tests for parameter constancy in multivariate dynamic models," Economics Letters, Elsevier, vol. 73(2), pages 155-160, November.
    7. Andrés González & Kirstin Hubrich & Timo Teräsvirta, 2009. "Forecasting inflation with gradual regime shifts and exogenous information," CREATES Research Papers 2009-03, Department of Economics and Business Economics, Aarhus University.
    8. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    9. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    10. Robert K. Kaufmann & David I. Stern, 1997. "Evidence for human influence on climate from hemispheric temperature relations," Nature, Nature, vol. 388(6637), pages 39-44, July.
    11. Trevor Breusch & Farshid Vahid, 2008. "Global Temperature Trends," ANU Working Papers in Economics and Econometrics 2008-495, Australian National University, College of Business and Economics, School of Economics.
    12. Anderson, Heather M. & Vahid, Farshid, 1998. "Testing multiple equation systems for common nonlinear components," Journal of Econometrics, Elsevier, vol. 84(1), pages 1-36, May.
    13. Bierens, Herman J, 2000. "Nonparametric Nonlinear Cotrending Analysis, with an Application to Interest and Inflation in the United States," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 323-337, July.
    14. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
    15. Grayham E. Mizon & David F. Hendry, 1998. "Exogeneity, causality, and co-breaking in economic policy analysis of a small econometric model of money in the UK," Empirical Economics, Springer, vol. 23(3), pages 267-294.
    16. Camarero, Mariam & Ordonez, Javier, 2006. "Is there a nonlinear co-movement in the EU countries' unemployment?," Economics Letters, Elsevier, vol. 93(2), pages 157-162, November.
    17. Dick van Dijk 1 & Birgit Strikholm & Timo Teräsvirta, 2003. "The effects of institutional and technological change and business cycle fluctuations on seasonal patterns in quarterly industrial production series," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 79-98, June.
    18. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    19. Chapman, David A. & Ogaki, Masao, 1993. "Cotrending and the stationarity of the real interest rate," Economics Letters, Elsevier, vol. 42(2-3), pages 133-138.
    20. Hui Liu & Gabriel Rodriguez, 2003. "Human Activities and Global Warming: A Cointegration Analysis," Working Papers 0307E, University of Ottawa, Department of Economics.
    21. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    22. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-395, October.
    23. Luis A. Gil-Alana, 2008. "Time trend estimation with breaks in temperature time series," Faculty Working Papers 09/08, School of Economics and Business Administration, University of Navarra.
    24. Junsoo Lee & Dante Mossi, 1996. "On improvements of Phillips-Perron unit root tests using optimal bandwidth estimates," Applied Economics Letters, Taylor & Francis Journals, vol. 3(3), pages 197-200.
    25. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    26. Franchi, Massimo & Ordóñez, Javier, 2008. "Common smooth transition trend-stationarity in European unemployment," Economics Letters, Elsevier, vol. 101(2), pages 106-109, November.
    27. Ralf Becker & Walter Enders & Junsoo Lee, 2006. "A Stationarity Test in the Presence of an Unknown Number of Smooth Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(3), pages 381-409, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Estrada & Pierre Perron, "undated". "Detection and attribution of climate change through econometric methods," Boston University - Department of Economics - Working Papers Series 2013-015, Boston University - Department of Economics.
    2. Walter Enders & Matthew T. Holt, 2014. "The Evolving Relationships between Agricultural and Energy Commodity Prices: A Shifting-Mean Vector Autoregressive Analysis," NBER Chapters, in: The Economics of Food Price Volatility, pages 135-187, National Bureau of Economic Research, Inc.
    3. Barry K. Goodwin & Matthew T. Holt & Jeffrey P. Prestemon, 2021. "Semi-parametric models of spatial market integration," Empirical Economics, Springer, vol. 61(5), pages 2335-2361, November.
    4. Kirstin Hubrich & Timo Teräsvirta, 2013. "Thresholds and Smooth Transitions in Vector Autoregressive Models," CREATES Research Papers 2013-18, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holt, Matthew T. & Teräsvirta, Timo, 2020. "Global hemispheric temperatures and co-shifting: A vector shifting-mean autoregressive analysis," Journal of Econometrics, Elsevier, vol. 214(1), pages 198-215.
    2. Walter Enders & Matthew T. Holt, 2014. "The Evolving Relationships between Agricultural and Energy Commodity Prices: A Shifting-Mean Vector Autoregressive Analysis," NBER Chapters, in: The Economics of Food Price Volatility, pages 135-187, National Bureau of Economic Research, Inc.
    3. Francisco Estrada & Pierre Perron, "undated". "Detection and attribution of climate change through econometric methods," Boston University - Department of Economics - Working Papers Series 2013-015, Boston University - Department of Economics.
    4. Chang, Tsangyao & Ranjbar, Omid & Tang, D.P., 2013. "Revisiting the mean reversion of inflation rates for 22 OECD countries," Economic Modelling, Elsevier, vol. 30(C), pages 245-252.
    5. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    6. Cuihong Ye & Yiguo Chen & Roula Inglesi-Lotz & Tsangyao Chang, 2020. "CO2 emissions converge in China and G7 countries? Further evidence from Fourier quantile unit root test," Energy & Environment, , vol. 31(2), pages 348-363, March.
    7. Francisco Estrada & Pierre Perron, 2019. "Breaks, Trends and the Attribution of Climate Change: A Time-Series Analysis," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 1-31.
    8. Noriega, Antonio E. & Soria, Luis M. & Velázquez, Ramón, 2008. "International evidence on stochastic and deterministic monetary neutrality," Economic Modelling, Elsevier, vol. 25(6), pages 1261-1275, November.
    9. R. Velazquez & A.E. Noriega & L.M. Soria, 2004. "International Evidence on Monetary Neutrality Under Broken Trend Stationary Models," Econometric Society 2004 Latin American Meetings 57, Econometric Society.
    10. Matos, Paulo Rogério Faustino & Bueno, Amadeus & Trompieri, Nicolino, 2014. "Análise de Integração Financeira na América do Sul," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(2), June.
    11. Tolga Omay & Muhammad Shahbaz & Chris Stewart, 2021. "Is there really hysteresis in the OECD unemployment rates? New evidence using a Fourier panel unit root test," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(4), pages 875-901, November.
    12. repec:fgv:epgrbe:v:68:n:2:a:6 is not listed on IDEAS
    13. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    14. Liu, Lin & Chang, Hsu-Ling & Su, Chi-Wei & Jiang, Chun, 2013. "Real interest rate parity in East Asian countries based on China with flexible Fourier stationary test," Japan and the World Economy, Elsevier, vol. 25, pages 52-58.
    15. Tie-Ying Liu & Chi-Wei Su & Xu-Zhao Jiang, 2016. "Is China’S Urbanization Convergent?," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(05), pages 1-18, December.
    16. Omay, Tolga & Shahbaz, Muhammad & Stewart, Chris, 2021. "Is There Really Hysteresis in OECD Countries’ Unemployment Rates? New Evidence Using a Fourier Panel Unit Root Test," MPRA Paper 107691, University Library of Munich, Germany, revised 10 May 2021.
    17. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
    18. Li, Xiao-Lin & Tang, D.P. & Chang, Tsangyao, 2014. "CO2 emissions converge in the 50 U.S. states — Sequential panel selection method," Economic Modelling, Elsevier, vol. 40(C), pages 320-333.
    19. Tolga Omay & Mübariz Hasanov & Yongcheol Shin, 2018. "Testing for Unit Roots in Dynamic Panels with Smooth Breaks and Cross-Sectionally Dependent Errors," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 167-193, June.
    20. Massmann, Michael, 2007. "Cobra: A package for co-breaking analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 663-679, October.
    21. Tsangyao Chang & Chia-Hao Lee & Pei-I Chou, 2012. "Is per capita real GDP stationary in five southeastern European countries? Fourier unit root test," Empirical Economics, Springer, vol. 43(3), pages 1073-1082, December.

    More about this item

    Keywords

    Co-breaking; Co-shifting; Hemispheric surface temperatures; Vector nonlinear model; Structural change; Shifting-mean vector autoregression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2012-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.