[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aah/create/2014-19.html
   My bibliography  Save this paper

Discriminating between fractional integration and spurious long memory

Author

Listed:
  • Niels Haldrup

    (Aarhus University and CREATES)

  • Robinson Kruse

    (Leibniz University Hannover and CREATES)

Abstract
Fractionally integrated processes have become a standard class of models to describe the long memory features of economic and financial time series data. However, it has been demonstrated in numerous studies that structural break processes and non-linear features can often be confused as being long memory. The question naturally arises whether it is possible empirically to determine the source of long memory as being genuinely long memory in the form of a fractionally integrated process or whether the long range dependence is of a di¤erent nature. In this paper we suggest a testing procedure that helps discriminating between such processes. The idea is based on the feature that nonlinear transformations of stationary fractionally integrated Gaussian processes decrease the order of memory in a speci?c way which is determined by the Hermite rank of the transformation. In principle, a non-linear transformation of the series can make the series short memory I(0). We suggest using the Wald test of Shimotsu (2007) to test the null hypothesis that a vector time series of properly transformed variables is I(0). Our testing procedure is designed such that even non-stationary fractionally integrated processes are permitted under the null hypothesis. The test is shown to have good size and to be robust against certain types of deviations from Gaussianity. The test is also shown to be consistent against a broad class of processes that are non-fractional but still exhibit (spurious) long memory. In particular, the test is shown to have excellent power against a class of stationary and non-stationary random level shift models as well as Markov switching GARCH processes where the break and transition probabilities are allowed to be time varying.

Suggested Citation

  • Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2014-19
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/14/rp14_19.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    3. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    4. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Zhongjun Qu & Pierre Perron, 2013. "A stochastic volatility model with random level shifts and its applications to S&P 500 and NASDAQ return indices," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 309-339, October.
    7. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    8. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    9. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    10. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    11. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
    12. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    13. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    14. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    15. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
    16. Morten Ørregaard Nielsen & Per Frederiksen, 2011. "Fully modified narrow‐band least squares estimation of weak fractional cointegration," Econometrics Journal, Royal Economic Society, vol. 14, pages 77-120, February.
    17. Ermini, Luigi & Granger, Clive W. J., 1993. "Some generalizations on the algebra of I(1) processes," Journal of Econometrics, Elsevier, vol. 58(3), pages 369-384, August.
    18. Morten Ørregaard Nielsen, 2005. "Multivariate Lagrange Multiplier Tests for Fractional Integration," Journal of Financial Econometrics, Oxford University Press, vol. 3(3), pages 372-398.
    19. Berenguer-Rico, Vanessa & Gonzalo, Jesús, 2014. "Summability of stochastic processes—A generalization of integration for non-linear processes," Journal of Econometrics, Elsevier, vol. 178(P2), pages 331-341.
    20. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    21. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    22. Frank S. Nielsen, 2011. "Local Whittle estimation of multi‐variate fractionally integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 317-335, May.
    23. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    24. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    25. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    26. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 137(2), pages 277-310, April.
    27. Gourieroux, Christian & Jasiak, Joann, 2001. "Memory and infrequent breaks," Economics Letters, Elsevier, vol. 70(1), pages 29-41, January.
    28. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    29. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    30. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
    31. Lasak, Katarzyna, 2010. "Likelihood based testing for no fractional cointegration," Journal of Econometrics, Elsevier, vol. 158(1), pages 67-77, September.
    32. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    33. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    34. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    35. Marco Avarucci & Domenico Marinucci, 2007. "Polynomial Cointegration Between Stationary Processes With Long Memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 923-942, November.
    36. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    37. Christensen, Bent Jesper & Nielsen, Morten Orregaard, 2006. "Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting," Journal of Econometrics, Elsevier, vol. 133(1), pages 343-371, July.
    38. Frank S. Nielsen, 2009. "Local Whittle estimation of multivariate fractionally integrated processes," CREATES Research Papers 2009-38, Department of Economics and Business Economics, Aarhus University.
    39. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
    40. Berenguer Rico, Vanessa, 2013. "Co-summability from linear to non-linear cointegration," UC3M Working papers. Economics we1312, Universidad Carlos III de Madrid. Departamento de Economía.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    2. Chevillon, Guillaume & Mavroeidis, Sophocles, 2017. "Learning can generate long memory," Journal of Econometrics, Elsevier, vol. 198(1), pages 1-9.
    3. Gianluca Cubadda & Alain Hecq & Antonio Riccardo, 2018. "Forecasting Realized Volatility Measures with Multivariate and Univariate Models: The Case of The US Banking Sector," CEIS Research Paper 445, Tor Vergata University, CEIS, revised 30 Oct 2018.
    4. Gil-Alana, Luis A. & Gupta, Rangan, 2014. "Persistence and cycles in historical oil price data," Energy Economics, Elsevier, vol. 45(C), pages 511-516.
    5. Less, Vivien & Sibbertsen, Philipp, 2022. "Estimation and Testing in a Perturbed Multivariate Long Memory Framework," Hannover Economic Papers (HEP) dp-704, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    6. Chevillon, Guillaume & Hecq, Alain & Laurent, Sébastien, 2018. "Generating univariate fractional integration within a large VAR(1)," Journal of Econometrics, Elsevier, vol. 204(1), pages 54-65.
    7. Nima Nonejad, 2019. "Modeling Persistence and Parameter Instability in Historical Crude Oil Price Data Using a Gibbs Sampling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1687-1710, April.
    8. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    9. Dalla, Violetta, 2015. "Power transformations of absolute returns and long memory estimation," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 1-18.
    10. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    2. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    3. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    4. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    5. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    6. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    7. Gabriel Rodríguez, 2016. "Modeling Latin-American Stock and Forex Markets Volatility: Empirical Application of a Model with Random Level Shifts and Genuine Long Memory [Modelando la volatilidad de los mercados bursátiles y cam," Documentos de Trabajo / Working Papers 2016-416, Departamento de Economía - Pontificia Universidad Católica del Perú.
    8. Hassler, Uwe & Rodrigues, Paulo M.M. & Rubia, Antonio, 2014. "Persistence in the banking industry: Fractional integration and breaks in memory," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 95-112.
    9. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    10. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    11. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    12. Davide Delle Monache & Stefano Grassi & Paolo Santucci, 2015. "Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach," Studies in Economics 1511, School of Economics, University of Kent.
    13. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "Crude oil price behaviour before and after military conflicts and geopolitical events," Energy, Elsevier, vol. 120(C), pages 79-91.
    14. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    15. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    16. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    17. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    18. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    19. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    20. Andrés Herrera Aramburú & Gabriel Rodríguez, 2016. "Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.

    More about this item

    Keywords

    Long memory; fractional integration; non-linear models; structural breaks; random level shifts; Hermite polynomials; realized volatility; in?ation.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2014-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.