[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cte/imrepe/27672.html
   My bibliography  Save this paper

Golden options in financial mathematics

Author

Listed:
  • Balbás, Beatriz
  • Balbás, Raquel
Abstract
This paper deals with the construction of smooth good deals (SGD), i.e., sequences of self- nancing strategies whose global risk diverges to ∞ and such that every security in every strategy of the sequence is a smooth derivative with a bounded delta. If the selected risk measure is the value at risk then these sequences exist under quite weak conditions, since one can involve risks with both bounded and unbounded expectation, as well as non-friction-free pricing rules. Moreover, every strategy in the sequence is composed of an European option plus a position in a riskless asset. The strike of the option is easily computed in practice, and the ideas may also apply in some actuarial problems such as the selection of an optimal reinsurance contract. If the chosen risk measure is a coherent one then the general setting is more limited. Indeed, though frictions are still accepted, expectations and variances must remain nite. The existence of SGDs will be characterized, and computational issues will be properly addressed as well. It will be shown that SGDs often exist, and for the conditional value at risk they are composed of the riskless asset plus easily replicable European puts. Numerical experiments will be presented in all of the studied cases.

Suggested Citation

  • Balbás, Beatriz & Balbás, Raquel, 2018. "Golden options in financial mathematics," IC3JM - Estudios = Working Papers 27672, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
  • Handle: RePEc:cte:imrepe:27672
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/4d1867bd-8c9b-4c0a-b07c-40652af37171/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. Oleg Bondarenko, 2014. "Why Are Put Options So Expensive?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-50.
    3. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. repec:dau:papers:123456789/353 is not listed on IDEAS
    6. Zhao, Pan & Xiao, Qingxian, 2016. "Portfolio selection problem with liquidity constraints under non-extensive statistical mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 5-10.
    7. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    8. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    9. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:idrepe:27672 is not listed on IDEAS
    2. repec:cte:idrepe:22932 is not listed on IDEAS
    3. Balbás, Alejandro & Serna, Gregorio, 2024. "Selling options to beat the market: Further empirical evidence," Research in International Business and Finance, Elsevier, vol. 67(PB).
    4. repec:cte:idrepe:23546 is not listed on IDEAS
    5. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    6. Balbás, Beatriz & Balbás, Raquel, 2016. "Must an optimal buy and hold strategy contain any derivative?," IC3JM - Estudios = Working Papers 23912, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
    7. Balbás, Raquel, 2006. "Optimizing Measures of Risk: A Simplex-like Algorithm," DEE - Working Papers. Business Economics. WB 6534, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    8. Raimund M. Kovacevic, 2019. "Valuation and pricing of electricity delivery contracts: the producer’s view," Annals of Operations Research, Springer, vol. 275(2), pages 421-460, April.
    9. Garrido, José & Okhrati, Ramin, 2016. "Good deal measurement in asset pricing: Actuarial and financial implications," IC3JM - Estudios = Working Papers 23546, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
    10. Niushan Gao & Cosimo Munari, 2017. "Surplus-invariant risk measures," Papers 1707.04949, arXiv.org, revised May 2018.
    11. Jiménez Guerra, Pedro, 2006. "Generalized vector risk functions," DEE - Working Papers. Business Economics. WB wb066721, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    12. Righi, Marcelo Brutti, 2024. "Star-shaped acceptability indexes," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 170-181.
    13. Niushan Gao & Cosimo Munari, 2020. "Surplus-Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1342-1370, November.
    14. Jocelyne Bion-Nadal, 2007. "Bid-Ask Dynamic Pricing in Financial Markets with Transaction Costs and Liquidity Risk," Papers math/0703074, arXiv.org.
    15. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    16. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    17. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    18. Dipankar Mondal & N. Selvaraju, 2020. "Upside Beta Ratio: A Performance Measure For Potential-Seeking Investors," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-26, April.
    19. Alfredo Ibáñez, 2005. "Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach," Computing in Economics and Finance 2005 216, Society for Computational Economics.
    20. Daniel Lacker, 2015. "Liquidity, risk measures, and concentration of measure," Papers 1510.07033, arXiv.org, revised Oct 2015.
    21. repec:cte:idrepe:id-16-01 is not listed on IDEAS
    22. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    23. Balbás, Beatriz & Balbás, Raquel, 2016. "Coherent Pricing," IC3JM - Estudios = Working Papers 22932, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
    24. Balbás, Beatriz & Balbás, Raquel, 2013. "On the inefficiency of Brownian motions and heavier tailed price processes," IC3JM - Estudios = Working Papers id-13-01, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).

    More about this item

    Keywords

    Golden option;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:imrepe:27672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.march.es/ceacs/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.