Nowcasting Tail Risk to Economic Activity at a Weekly Frequency
Author
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Nowcasting tail risk to economic activity at a weekly frequency," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 843-866, August.
References listed on IDEAS
- Giacomini, Raffaella & Komunjer, Ivana, 2005.
"Evaluation and Combination of Conditional Quantile Forecasts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
- Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
- Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Khare, Kshitij & Hobert, James P., 2012. "Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 108-116.
- Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020.
"Financial Variables as Predictors of Real Growth Vulnerability,"
Documents de Travail de l'OFCE
2020-06, Observatoire Francais des Conjonctures Economiques (OFCE).
- Reichlin, Lucrezia & Ricco, Giovanni & Hasenzagl, Thomas, 2020. "Financial variables as predictors of real growth vulnerability," Discussion Papers 05/2020, Deutsche Bundesbank.
- Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," SciencePo Working papers Main hal-03403077, HAL.
- Reichlin, Lucrezia & Ricco, Giovanni & Hasenzagl, Thomas, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," CEPR Discussion Papers 14322, C.E.P.R. Discussion Papers.
- Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," Working Papers hal-03403077, HAL.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- James H. Stock & Mark W. Watson, 2016.
"Core Inflation and Trend Inflation,"
The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 770-784, October.
- James H. Stock & Mark W. Watson, 2015. "Core Inflation and Trend Inflation," NBER Working Papers 21282, National Bureau of Economic Research, Inc.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024.
"Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," Working Papers 20-02R, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," CEPR Discussion Papers 17512, C.E.P.R. Discussion Papers.
- Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019.
"Dynamic semiparametric models for expected shortfall (and Value-at-Risk),"
Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
- Andrew J. Patton & Johanna F. Ziegel & Rui Chen, 2017. "Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)," Papers 1707.05108, arXiv.org.
- Faust, Jon & Wright, Jonathan H., 2009.
"Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
- Jon Faust & Jonathan H. Wright, 2007. "Comparing Greenbook and Reduced Form Forecasts using a Large Realtime Dataset," NBER Working Papers 13397, National Bureau of Economic Research, Inc.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2022.
"Measuring real activity using a weekly economic index,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 667-687, June.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2020. "Measuring Real Activity Using a Weekly Economic Index," Staff Reports 920, Federal Reserve Bank of New York.
- Daniel J. Lewis & Karel Mertens & James H. Stock, 2020. "Measuring Real Activity Using a Weekly Economic Index," Working Papers 2011, Federal Reserve Bank of Dallas, revised 02 Mar 2021.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998.
"Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
- Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, University Library of Munich, Germany.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013.
"Macroeconomic forecasting and structural change,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2009. "Macroeconomic Forecasting and Structural Change," Working Papers ECARES 2009_020, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & D'Agostino, Antonello & Gambetti, Luca, 2010. "Macroeconomic forecasting and structural change," Working Paper Series 1167, European Central Bank.
- D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
- Giannone, Domenico & D’Agostino, Antonello & Gambetti, Luca, 2009. "Macroeconomic Forecasting and Structural Change," CEPR Discussion Papers 7542, C.E.P.R. Discussion Papers.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
- repec:hal:spmain:info:hdl:2441/4nn4ojjkth8qe9ci5b0hpu7ala is not listed on IDEAS
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014.
"Nowcasting GDP in Real Time: A Density Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017.
"Density Forecasts With Midas Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
- Andrews, Donald W K & Monahan, J Christopher, 1992.
"An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator,"
Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
- Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
- Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016.
"Systemic risk and the macroeconomy: An empirical evaluation,"
Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
- Stefano Giglio & Bryan T. Kelly & Seth Pruitt, 2015. "Systemic Risk and the Macroeconomy: An Empirical Evaluation," NBER Working Papers 20963, National Bureau of Economic Research, Inc.
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
- Gianni De Nicolò & Marcella Lucchetta, 2017.
"Forecasting Tail Risks,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 159-170, January.
- Gianni De Nicolò & Marcella Lucchetta, 2015. "Forecasting Tail Risks," CESifo Working Paper Series 5286, CESifo.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
- Kozicki, Sharon & Hoffman, Barak, 2004. "Rounding Error: A Distorting Influence on Index Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(3), pages 319-338, June.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014.
"Nowcasting GDP in Real Time: A Density Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
- Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Sulkhan Chavleishvili & Simone Manganelli, 2024.
"Forecasting and stress testing with quantile vector autoregression,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
- Chavleishvili, Sulkhan & Manganelli, Simone, 2019. "Forecasting and stress testing with quantile vector autoregression," Working Paper Series 2330, European Central Bank.
- Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
- Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Eraslan, Sercan & Reif, Magnus, 2023. "A latent weekly GDP indicator for Germany," Technical Papers 08/2023, Deutsche Bundesbank.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024.
"Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Antolin-Diaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2023. "Advances in Nowcasting Economic Activity: The Role of Heterogeneous Dynamics and Fat Tails," CEPR Discussion Papers 17800, C.E.P.R. Discussion Papers.
- Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024.
"Expecting the unexpected: Stressed scenarios for economic growth,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
- Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2023. "Expecting the unexpected: Stressed scenarios for economic growth," Working Papers 202314, University of California at Riverside, Department of Economics.
- Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023.
"Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP,"
Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
- Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2022. "Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting tail risks of Monthly US GDP," Papers 2209.01910, arXiv.org.
- Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
- James Mitchell & Aubrey Poon & Dan Zhu, 2024.
"Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
- James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
- Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2022. "Bayesian Multivariate Quantile Regression with alternative Time-varying Volatility Specifications," Papers 2211.16121, arXiv.org, revised Aug 2024.
- Schick, Manuel, 2024. "Real-time Nowcasting Growth-at-Risk using the Survey of Professional Forecasters," Working Papers 0750, University of Heidelberg, Department of Economics.
- Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2024. "A Quantile Nelson-Siegel model," Papers 2401.09874, arXiv.org.
- Narasingha Das & Partha Gangopadhyay, 2023. "Did weekly economic index and volatility index impact US food sales during the first year of the pandemic?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024.
"Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," Working Papers 20-02R, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," CEPR Discussion Papers 17512, C.E.P.R. Discussion Papers.
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022.
"High-frequency monitoring of growth at risk,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
- Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-frequency monitoring of growth-at-risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jean-Guillaume Sahuc & Matteo Mogliani & Laurent Ferrara, 2022. "High-frequency monitoring of growth at risk," Post-Print hal-03361425, HAL.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017.
"Have Standard VARS Remained Stable Since the Crisis?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
- Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2014. "Have standard VARs remained stable since the crisis?," Working Paper 2014/13, Norges Bank.
- Marcellino, Massimiliano & Aastveit, Knut Are & Carriero, Andrea & Clark, Todd, 2016. "Have Standard VARs Remained Stable Since the Crisis?," CEPR Discussion Papers 11558, C.E.P.R. Discussion Papers.
- Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2014. "Have Standard VARs Remained Stable since the Crisis?," Working Papers (Old Series) 1411, Federal Reserve Bank of Cleveland.
- Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017.
"Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
- Fabian Kr ger & Todd E. Clark & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers No 8/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Todd E. Clark & Fabian Krueger & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers (Old Series) 1439, Federal Reserve Bank of Cleveland.
- Krüger, Fabian & Clark, Todd E. & Ravazzolo, Francesco, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113077, Verein für Socialpolitik / German Economic Association.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023.
"Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
- Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang & Österholm, Pär, 2021. "Modelling the Relation between the US Real Economy and the Corporate Bond-Yield Spread in Bayesian VARs with non-Gaussian Disturbances," Working Papers 2021:9, Örebro University, School of Business.
- Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020.
"Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors,"
The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
- Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2017. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," Working Papers (Old Series) 1715, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2017. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," Working Papers 2017-026, Federal Reserve Bank of St. Louis.
- Todd E Clark & Michael W McCracken & Elmar Mertens, 2017. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," BIS Working Papers 667, Bank for International Settlements.
- Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2017. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," Working Papers 17-15R, Federal Reserve Bank of Cleveland.
- Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
- Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Specification Choices in Quantile Regression for Empirical Macroeconomics,"
Working Papers
22-25, Federal Reserve Bank of Cleveland.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2024. "Specification Choices in Quantile Regression for Empirical Macroeconomics," CEPR Discussion Papers 18901, C.E.P.R. Discussion Papers.
- James Mitchell & Aubrey Poon & Dan Zhu, 2024.
"Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
- James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
- Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017.
"Forecasting GDP with global components: This time is different,"
International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
- Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Paper 2015/05, Norges Bank.
- Hilde C. Bjornland & Francesco Ravazzolo & Leif Anders Thorsrud, 2016. "Forecasting GDP with global components. This time is different," CAMA Working Papers 2016-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
More about this item
Keywords
Forecasting; Downside risk; Pandemics; Big data; Mixed frequency; Quantile regression;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:16496. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.