[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_10995.html
   My bibliography  Save this paper

Oil Market Efficiency, Quantity of Information, and Oil Market Turbulence

Author

Listed:
  • Marc Gronwald
  • Sania Wadud
  • Kingsley Dogah
Abstract
This paper analyses the informational efficiency of the WTI crude oil markets using a recently proposed quantitative measure for market inefficiency. The procedure measures the extent to which observed oil price behaviour deviates from the Random Walk benchmark which represents an efficient market. The key findings are, first, that crude oil market inefficiency varies over time. Second, abrupt increases in inefficiency occur during extreme episodes such as the price downturns witnessed in 2008, 2014, and early 2020, as well as the begin of the Ukraine war in 2022. Third, the paper puts forward the interpretation of oil market inefficiency as oil market turbulence. This occurs when the quantity of information the market has to process is exceptionally high. Fourth, the paper demonstrates that oil market turbulence (or the drivers behind it) have negative macroeconomic consequences.

Suggested Citation

  • Marc Gronwald & Sania Wadud & Kingsley Dogah, 2024. "Oil Market Efficiency, Quantity of Information, and Oil Market Turbulence," CESifo Working Paper Series 10995, CESifo.
  • Handle: RePEc:ces:ceswps:_10995
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp10995.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    3. Marc Gronwald, 2008. "Large Oil Shocks and the US Economy: Infrequent Incidents with Large Effects," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 151-172.
    4. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    5. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    6. Kandel, Eugene & Pearson, Neil D, 1995. "Differential Interpretation of Public Signals and Trade in Speculative Markets," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 831-872, August.
    7. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    8. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    9. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    10. Ma, Xiaohan & Samaniego, Roberto, 2020. "The macroeconomic impact of oil earnings uncertainty: New evidence from analyst forecasts," Energy Economics, Elsevier, vol. 90(C).
    11. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    12. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    13. Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
    14. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    15. Christiane Baumeister & Lutz Kilian, 2016. "Understanding the Decline in the Price of Oil since June 2014," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 131-158.
    16. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    17. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    18. Mitchell, Mark L & Mulherin, J Harold, 1994. "The Impact of Public Information on the Stock Market," Journal of Finance, American Finance Association, vol. 49(3), pages 923-950, July.
    19. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    20. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    21. V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
    22. Brad M. Barber & Terrance Odean, 2001. "Boys will be Boys: Gender, Overconfidence, and Common Stock Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 261-292.
    23. Shimotsu, Katsumi & Phillips, Peter C.B., 2006. "Local Whittle estimation of fractional integration and some of its variants," Journal of Econometrics, Elsevier, vol. 130(2), pages 209-233, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Gronwald & Sania Wadud & Kingsley Dogah, 2024. "Informational Efficiency of World Oil Markets: One Great Pool, but with Varying Depth," CESifo Working Paper Series 11017, CESifo.
    2. Marc Gronwald & Sania Wadud, 2024. "“My Name Is Bond. Green Bond.” Informational Efficiency of Climate Finance Markets," CESifo Working Paper Series 11029, CESifo.
    3. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    4. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    5. Martha Elena Delgado-Rojas & Hernán Rincón-Castro, 2017. "Incertidumbre acerca de la política fiscal y ciclo económico," Borradores de Economia 1008, Banco de la Republica de Colombia.
    6. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    7. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    8. Mustanen, Dmitri & Maaitah, Ahmad & Mishra, Tapas & Parhi, Mamata, 2022. "The power of investors’ optimism and pessimism in oil market forecasting," Energy Economics, Elsevier, vol. 114(C).
    9. Gao, Xin & Li, Bingxin & Liu, Rui, 2023. "The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia?," Journal of Commodity Markets, Elsevier, vol. 30(C).
    10. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    11. Dechert, Andreas, 2012. "Variance Ratio Testing for Fractional Cointegration in Presence of Trends and Trend Breaks," MPRA Paper 41044, University Library of Munich, Germany.
    12. Carlos D. Ramirez, 2024. "The effect of economic policy uncertainty under fractional integration," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(1), pages 89-110, January.
    13. Abakah, Emmanuel Joel Aikins & Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko, 2021. "Economic policy uncertainty: Persistence and cross-country linkages," Research in International Business and Finance, Elsevier, vol. 58(C).
    14. Sattarhoff, Cristina & Gronwald, Marc, 2022. "Measuring informational efficiency of the European carbon market — A quantitative evaluation of higher order dependence," International Review of Financial Analysis, Elsevier, vol. 84(C).
    15. Chuang, Wen-I & Lee, Bong-Soo, 2006. "An empirical evaluation of the overconfidence hypothesis," Journal of Banking & Finance, Elsevier, vol. 30(9), pages 2489-2515, September.
    16. Dechert, Andreas, 2014. "Fraktionale Kointegrationsbeziehungen zwischen Euribor-Zinssätzen," W.E.P. - Würzburg Economic Papers 93, University of Würzburg, Department of Economics.
    17. Anthony M. Diercks & Alex Hsu & Andrea Tamoni, 2020. "When it Rains it Pours: Cascading Uncertainty Shocks," Finance and Economics Discussion Series 2020-064, Board of Governors of the Federal Reserve System (U.S.).
    18. Wensheng Kang & Ronald A. Ratti & Joaquin Vespignani, 2020. "Impact of global uncertainty on the global economy and large developed and developing economies," Applied Economics, Taylor & Francis Journals, vol. 52(22), pages 2392-2407, May.
    19. Istiak, Khandokar & Serletis, Apostolos, 2020. "Risk, uncertainty, and leverage," Economic Modelling, Elsevier, vol. 91(C), pages 257-273.
    20. Shimotsu, Katsumi, 2012. "Exact local Whittle estimation of fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 169(2), pages 266-278.

    More about this item

    Keywords

    crude oil markets; efficient market hypothesis; quantity of information; fractional integration;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_10995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.