[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ccc/wpaper/002.html
   My bibliography  Save this paper

An assessment of energy resources for global decarbonisation

Author

Listed:
  • Jean-Francois Mercure
  • Pablo Salas

    (Cambridge Centre for Climate Change Mitigation Research, Department of Land Economy, University of Cambridge)

Abstract
This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations based onto natural resource assessment data. In the first part, economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, using consistent energy units that allow direct comparisons to be made. These calculations take into account, and provide a theoretical framework for considering uncertainty in resource assessments, providing a novel contribution aimed at enabling the introduction of uncertainty into resource limitations used in energy modelling. The theoretical details and parameters provided in tables enable this extensive natural resource database to be adapted to any modelling framework for energy systems. The second part of this paper uses these cost-supply curves in order to build a tool for analysing global scenarios of energy use, in the context of exploring the feasibility global decarbonisation using renewable energy sources. For such a purpose, a theoretical framework is given for evaluating either flows of stock energy resources for given price path assumptions for the related energy carriers, or the prices of energy carriers given energy demand assumptions. Results of both approaches are used in order to produce a complete comparison of global energy resources. The particular case of the feasibility of global decarbonisation by the end of the century is explored. Since the scale of the required amount of energy flows from renewables is comparable to the sum of the technical potentials, the associated scale of global land use for energy production is found to be large. For complete decarbonisation, without energy demand reductions, 7 to 12\% of the global land area could be required for energy production activities, emphasising the importance of improving energy consumption patterns and intensity of the global economy. The third part of this work is an appendix that provides all missing details, equations and databases necessary to understand and reproduce the work of Part I. This part is therefore aimed at enabling energy modellers to reproduce exactly and use in their own work the database that was constructed in this work.

Suggested Citation

  • Jean-Francois Mercure & Pablo Salas, 2013. "An assessment of energy resources for global decarbonisation," 4CMR Working Paper Series 002, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
  • Handle: RePEc:ccc:wpaper:002
    as

    Download full text from publisher

    File URL: http://be.4cmr.group.cam.ac.uk/working-papers/pdf/4cmr_WP_02.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donald W. Jones, Paul N. Leiby and Inja K. Paik, 2004. "Oil Price Shocks and the Macroeconomy: What Has Been Learned Since 1996," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-32.
    2. Wolf, J. & Bindraban, P. S. & Luijten, J. C. & Vleeshouwers, L. M., 2003. "Exploratory study on the land area required for global food supply and the potential global production of bioenergy," Agricultural Systems, Elsevier, vol. 76(3), pages 841-861, June.
    3. Dagoumas, [alpha].S. & Barker, T.S., 2010. "Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model," Energy Policy, Elsevier, vol. 38(6), pages 3067-3077, June.
    4. Jonathan Kohler, Michael Grubb, David Popp and Ottmar Edenhofer, 2006. "The Transition to Endogenous Technical Change in Climate-Economy Models: A Technical Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 17-56.
    5. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    6. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    7. Terry Barker, Haoran Pan, Jonathan Kohler, Rachel Warren, and Sarah Winne, 2006. "Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 241-258.
    8. Abed, K.A. & El-Mallah, A.A., 1997. "Capacity factor of wind turbines," Energy, Elsevier, vol. 22(5), pages 487-491.
    9. Weinzettel, Jan & Reenaas, Marte & Solli, Christian & Hertwich, Edgar G., 2009. "Life cycle assessment of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 742-747.
    10. van Vuuren, Detlef P. & van Vliet, Jasper & Stehfest, Elke, 2009. "Future bio-energy potential under various natural constraints," Energy Policy, Elsevier, vol. 37(11), pages 4220-4230, November.
    11. Terry Barker and S. Serban Scrieciu, 2010. "Modeling Low Climate Stabilization with E3MG: Towards a 'New Economics' Approach to Simulating Energy-Environment-Economy System Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    12. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    13. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    14. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
    15. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    2. Mercure, Jean-François & Salas, Pablo, 2013. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Energy Policy, Elsevier, vol. 63(C), pages 469-483.
    3. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
    4. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    5. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    6. Jean-Francois Mercure, 2012. "On the changeover timescales of technology transitions and induced efficiency changes: an overarching theory," Papers 1209.0424, arXiv.org.
    7. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    8. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    9. Felix Creutzig & Christoph von Stechow & David Klein & Carol Hunsberger & Nico Bauer & Alexander Popp & Ottmar Edenhofer, 2012. "Can Bioenergy Assessments Deliver?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    10. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    11. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    12. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    13. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    14. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    15. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    16. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    17. Arias-Gaviria, Jessica & Osorio, Andres F. & Arango-Aramburo, Santiago, 2020. "Estimating the practical potential for deep ocean water extraction in the Caribbean," Renewable Energy, Elsevier, vol. 150(C), pages 307-319.
    18. Brigitte Knopf, Ottmar Edenhofer, Christian Flachsland, Marcel T. J. Kok, Hermann Lotze-Campen, Gunnar Luderer, Alexander Popp, Detlef P. van Vuuren, 2010. "Managing the Low-Carbon Transition - From Model Results to Policies," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    19. Inga Boie & Mario Ragwitz & Anne Held, 2016. "A composite indicator for short-term diffusion forecasts of renewable energy technologies – the case of Germany," Energy & Environment, , vol. 27(1), pages 28-54, February.
    20. Charlie Wilson & Arnulf Grubler, 2011. "Lessons from the history of technological change for clean energy scenarios and policies," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 165-184, August.

    More about this item

    Keywords

    Global energy resources; Climate change mitigation; Energy Commodity Price Dynamics; Global Decarbonisation;
    All these keywords.

    JEL classification:

    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ccc:wpaper:002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aleix Altimiras-Martin (email available below). General contact details of provider: https://edirc.repec.org/data/cccamuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.