[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9789811202391_0072.html
   My bibliography  Save this book chapter

Non-Parametric Inference on Risk Measures for Integrated Returns

In: HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING

Author

Listed:
  • Henghsiu Tsai
  • Hwai-Chung Ho
  • Hung-Yin Chen
Abstract
When evaluating the market risk of long-horizon equity returns, it is always difficult to provide a statistically sound solution due to the limitation of the sample size. To solve the problem for the value-at-risk (VaR) and the conditional tail expectation (CTE), Ho et al. (2016, 2018) introduce a general multivariate stochastic volatility return model from which asymptotic formulas for the VaR and the CTE are derived for integrated returns with the length of integration increasing to infinity. Based on the formulas, simple non-parametric estimators for the two popular risk measures of the long-horizon returns are constructed. The estimates are easy to implement and shown to be consistent and asymptotically normal. In this chapter, we further address the issue of testing the equality of the CTEs of integrated returns. Extensive finite-sample analysis and real data analysis are conducted to demonstrate the efficiency of the test statistics we propose.

Suggested Citation

  • Henghsiu Tsai & Hwai-Chung Ho & Hung-Yin Chen, 2020. "Non-Parametric Inference on Risk Measures for Integrated Returns," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 72, pages 2485-2497, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9789811202391_0072
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0072
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0072
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789811202391_0072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.