[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9789811202391_0020.html
   My bibliography  Save this book chapter

Support Vector Machines Based Methodology for Credit Risk Analysis

In: HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING

Author

Listed:
  • Jianping Li
  • Mingxi Liu
  • Cheng Few Lee
  • Dengsheng Wu
Abstract
Credit risk analysis is a classical and crucial problem which has attracted great attention from both academic researchers and financial institutions. Through the accurate classification of borrowers, it enables financial institutions to develop lending strategies to obtain optimal profit and avoid potential risk. Actually, in recent decades, several different kinds of classification methods have been widely used to solve this problem. Owing to the specific attributes of the credit data, such as its small sample size and nonlinear characteristics, support vector machines (SVMs) show their advantages and have been widely used for scores of years. SVM adopts the principle of structural risk minimization (SRM), which could avoid the “dimension disaster” and has great generalization ability. In this study, we systematically review and analyze SVM based methodology in the field of credit risk analysis, which is composed of feature extraction methods, kernel function selection of SVM and hyper-parameter optimization methods, respectively. For verification purpose, two UCI credit datasets and a real-life credit dataset are used to compare the effectiveness of SVM-based methods and other frequently used classification methods. The experiment results show that the adaptive Lq SVM model with Gauss kernel and ES hyper-parameter optimization approach (ES-ALqG-SVM) outperforms all the other models listed in this study, and its average classification accuracy in the two UCI datasets could achieve 90.77% and 75.21%, respectively. Moreover, the classification accuracy of SVM-based methods is generally better or equal than other kinds of methods, such as See5, DT, MCCQP and other popular algorithms. Besides, Gauss kernel based SVM models show better classification accuracy than models with linear and polynomial kernel functions when choosing the same penalty form of the model, and the classification accuracy of Lq-based methods is generally better or equal than L1- and L2-based methods. In addition, for a certain SVM model, hyper-parameter optimization utilizing evolution strategy (ES) could effectively reduce the computing time in the premise of guaranteeing a higher accuracy, compared with the grid search (GS), particle swarm optimization (PSO) and simulated annealing (SA).

Suggested Citation

  • Jianping Li & Mingxi Liu & Cheng Few Lee & Dengsheng Wu, 2020. "Support Vector Machines Based Methodology for Credit Risk Analysis," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 20, pages 791-822, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9789811202391_0020
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0020
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0020
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Rejoinder on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 513-520, June.

    More about this item

    Keywords

    Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789811202391_0020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.