[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/the/publsh/1549.html
   My bibliography  Save this article

Information diffusion in networks through social learning

Author

Listed:
  • ,

    (IOMS Department, Stern School of Business, New York University)

  • ,

    (IOMS Department, Stern School of Business, New York University)

Abstract
We study perfect Bayesian equilibria of a sequential social learning model in which agents in a network learn about an underlying state by observing neighbors' choices. In contrast with prior work, we do not assume that the agents' sets of neighbors are mutually independent. We introduce a new metric of information diffusion in social learning, which is weaker than the traditional aggregation metric. We show that if a minimal connectivity condition holds and neighborhoods are independent, information always diffuses. Diffusion can fail in a well-connected network if neighborhoods are correlated. We show that information diffuses if neighborhood realizations convey little information about the network, as measured by network distortion, or if information asymmetries are captured through beliefs over the state of a finite Markov chain.

Suggested Citation

  • , & ,, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
  • Handle: RePEc:the:publsh:1549
    as

    Download full text from publisher

    File URL: http://econtheory.org/ojs/index.php/te/article/viewFile/20150807/13864/409
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    2. , & , & ,, 2014. "Dynamics of information exchange in endogenous social networks," Theoretical Economics, Econometric Society, vol. 9(1), January.
    3. Glenn Ellison & Drew Fudenberg, 1995. "Word-of-Mouth Communication and Social Learning," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 93-125.
    4. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    5. Lee In Ho, 1993. "On the Convergence of Informational Cascades," Journal of Economic Theory, Elsevier, vol. 61(2), pages 395-411, December.
    6. S. Ali & Navin Kartik, 2012. "Herding with collective preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 51(3), pages 601-626, November.
    7. Ellison, Glenn & Fudenberg, Drew, 1993. "Rules of Thumb for Social Learning," Journal of Political Economy, University of Chicago Press, vol. 101(4), pages 612-643, August.
    8. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    9. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    10. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    11. Benjamin Golub & Matthew O. Jackson, 2012. "How Homophily Affects the Speed of Learning and Best-Response Dynamics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1287-1338.
    12. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    13. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    14. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
    15. Celen, Bogachan & Kariv, Shachar, 2004. "Observational learning under imperfect information," Games and Economic Behavior, Elsevier, vol. 47(1), pages 72-86, April.
    16. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    17. Manuel Mueller-Frank & Mallesh M. Pai, 2016. "Social Learning with Costly Search," American Economic Journal: Microeconomics, American Economic Association, vol. 8(1), pages 83-109, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ignacio Monzón, 2017. "Aggregate Uncertainty Can Lead to Incorrect Herds," American Economic Journal: Microeconomics, American Economic Association, vol. 9(2), pages 295-314, May.
    2. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    3. Navin Kartik & SangMok Lee & Tianhao Liu & Daniel Rappoport, 2021. "Beyond Unbounded Beliefs: How Preferences and Information Interplay in Social Learning," Papers 2103.02754, arXiv.org, revised Apr 2024.
    4. Kakhbod, Ali & Loginova, Uliana, 2023. "When does introducing verifiable communication choices improve welfare?," Journal of Economic Behavior & Organization, Elsevier, vol. 210(C), pages 139-162.
    5. Harry Pei, 2020. "Reputation Building under Observational Learning," Papers 2006.08068, arXiv.org, revised Nov 2020.
    6. Enrique Urbano Arellano & Xinyang Wang, 2023. "Social Learning of General Rules," Papers 2310.15861, arXiv.org.
    7. Arieli, Itai, 2017. "Payoff externalities and social learning," Games and Economic Behavior, Elsevier, vol. 104(C), pages 392-410.
    8. Diefeng Peng & Yulei Rao & Xianming Sun & Erte Xiao, 2019. "Optional Disclosure and Observational Learning," Monash Economics Working Papers 05-18, Monash University, Department of Economics.
    9. Krishna Dasaratha & Kevin He, 2019. "Aggregative Efficiency of Bayesian Learning in Networks," Papers 1911.10116, arXiv.org, revised Sep 2024.
    10. Ilan Lobel & Evan Sadler, 2016. "Preferences, Homophily, and Social Learning," Operations Research, INFORMS, vol. 64(3), pages 564-584, June.
    11. Song, Yangbo & Zhang, Jiahua, 2020. "Social learning with coordination motives," Games and Economic Behavior, Elsevier, vol. 123(C), pages 81-100.
    12. Sadler, Evan, 2020. "Innovation adoption and collective experimentation," Games and Economic Behavior, Elsevier, vol. 120(C), pages 121-131.
    13. Armando Razo, 2020. "Social dilemmas with manifest and unknown networks," Rationality and Society, , vol. 32(1), pages 3-39, February.
    14. Mueller-Frank, Manuel & Arieliy, Itai, 2015. "A General Model of Boundedly Rational Observational Learning: Theory and Experiment," IESE Research Papers D/1120, IESE Business School.
    15. Dasaratha, Krishna & He, Kevin, 2021. "An experiment on network density and sequential learning," Games and Economic Behavior, Elsevier, vol. 128(C), pages 182-192.
    16. Ding, Huihui & Pivato, Marcus, 2021. "Deliberation and epistemic democracy," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 138-167.
    17. Sebastiano Della Lena, 2019. "Non-Bayesian Social Learning and the Spread of Misinformation in Networks," Working Papers 2019:09, Department of Economics, University of Venice "Ca' Foscari".
    18. Aleksei Smirnov & Egor Starkov, 2024. "Designing Social Learning," Papers 2405.05744, arXiv.org, revised May 2024.
    19. Parakhonyak, Alexei & Vikander, Nick, 2023. "Information design through scarcity and social learning," Journal of Economic Theory, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    2. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    3. Delia Coculescu & Médéric Motte & Huyên Pham, 2024. "Opinion dynamics in communities with major influencers and implicit social influence via mean-field approximation," Mathematics and Financial Economics, Springer, volume 18, number 7, December.
    4. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    5. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    6. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    7. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    8. Ilan Lobel & Evan Sadler, 2016. "Preferences, Homophily, and Social Learning," Operations Research, INFORMS, vol. 64(3), pages 564-584, June.
    9. Pooya Molavi & Ceyhun Eksin & Alejandro Ribeiro & Ali Jadbabaie, 2016. "Learning to Coordinate in Social Networks," Operations Research, INFORMS, vol. 64(3), pages 605-621, June.
    10. Jakob Grazzini & Domenico Massaro, 2021. "Dispersed information, social networks, and aggregate behavior," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 1129-1148, July.
    11. James C. D. Fisher & John Wooders, 2017. "Interacting information cascades: on the movement of conventions between groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(1), pages 211-231, January.
    12. Fernandes, Marcos R., 2023. "Confirmation bias in social networks," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 59-76.
    13. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    14. Syngjoo Choi & Edoardo Gallo & Shachar Kariv, 2015. "Networks in the laboratory," Cambridge Working Papers in Economics 1551, Faculty of Economics, University of Cambridge.
    15. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    16. Larson, Nathan, 2015. "Inertia in social learning from a summary statistic," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 596-626.
    17. Jakob Grazzini & Domenico Massaro, 2016. "Dispersed Information and the Origins of Aggregate Fluctuations," CESifo Working Paper Series 5957, CESifo.
    18. Jan Hązła & Ali Jadbabaie & Elchanan Mossel & M. Amin Rahimian, 2021. "Bayesian Decision Making in Groups is Hard," Operations Research, INFORMS, vol. 69(2), pages 632-654, March.
    19. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    20. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.

    More about this item

    Keywords

    Social networks; Bayesian learning; information aggregation; herding;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:the:publsh:1549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin J. Osborne (email available below). General contact details of provider: http://econtheory.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.