[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v18y2018i1p1-13.html
   My bibliography  Save this article

Defining deep decarbonization pathways for Switzerland: an economic evaluation

Author

Listed:
  • Frédéric Babonneau
  • Philippe Thalmann
  • Marc Vielle
Abstract
This article simulates deep decarbonization pathways for a small open economy that lacks the usual avenues for large CO2 reductions – heavy industry and power generation. A computable general equilibrium model is used to assess the energy and economic impacts of the transition to only one ton of CO2 emissions per capita in 2050. This represents a 76% reduction with respect to 1990 levels, while the population is expected to be 46% larger and GPD to increase by 90%. The article discusses several options and scenarios that are compatible with this emissions target and compares them with a reference scenario that extrapolates already-decided climate and energy policy instruments. We show that the ambitious target is attainable at moderate welfare costs, even if it needs very high carbon prices, and that these costs are lower when either CO2 can be captured and sequestered or electricity consumption can be taxed sufficiently to stabilize it.Policy relevanceIn the context of COP 21, all countries must propose intended contributions that involve deep decarbonization of their economy over the next decades. This article defines and analyses such pathways for Switzerland, taking into consideration the existing energy demand and supply and also already-defined climate policies. It draws several scenarios that are compatible with a target of 1 ton of CO2 emissions per capita in 2050. This objective is very challenging, especially with the nuclear phase out decided after the disaster in Fukushima and the political decision to balance electricity trade. Nevertheless, it is possible to design several feasible pathways that are based on different options. The economic cost is significant but affordable for the Swiss economy. The insights are relevant not only for Switzerland, but also for other industrialized countries when defining their INDCs.

Suggested Citation

  • Frédéric Babonneau & Philippe Thalmann & Marc Vielle, 2018. "Defining deep decarbonization pathways for Switzerland: an economic evaluation," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 1-13, January.
  • Handle: RePEc:taf:tcpoxx:v:18:y:2018:i:1:p:1-13
    DOI: 10.1080/14693062.2016.1227952
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2016.1227952
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2016.1227952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    2. Alain Bernard & Marc Vielle, 2008. "GEMINI-E3, a general equilibrium model of international–national interactions between economy, energy and the environment," Computational Management Science, Springer, vol. 5(3), pages 173-206, May.
    3. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    4. Deetman, Sebastiaan & Hof, Andries F. & Pfluger, Benjamin & van Vuuren, Detlef P. & Girod, Bastien & van Ruijven, Bas J., 2013. "Deep greenhouse gas emission reductions in Europe: Exploring different options," Energy Policy, Elsevier, vol. 55(C), pages 152-164.
    5. Steve Pye & Chris Bataille, 2016. "Improving deep decarbonization modelling capacity for developed and developing country contexts," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 27-46, June.
    6. Ashina, Shuichi & Fujino, Junichi & Masui, Toshihiko & Ehara, Tomoki & Hibino, Go, 2012. "A roadmap towards a low-carbon society in Japan using backcasting methodology: Feasible pathways for achieving an 80% reduction in CO2 emissions by 2050," Energy Policy, Elsevier, vol. 41(C), pages 584-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Frank Vöhringer & Marc Vielle & Philippe Thalmann & Anita Frehner & Wolfgang Knoke & Dario Stocker & Boris Thurm, 2019. "Costs And Benefits Of Climate Change In Switzerland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    2. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    3. Franck Lecocq & Alain Nadaï & Christophe Cassen, 2022. "Getting models and modellers to inform deep decarbonization strategies," Climate Policy, Taylor & Francis Journals, vol. 22(6), pages 695-710, July.
    4. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    5. Spencer, Thomas & Pierfederici, Roberta & Sartor, Oliver & Berghmans, Nicolas & Samadi, Sascha & Fischedick, Manfred & Knoop, Katharina & Pye, Steve & Criqui, Patrick & Mathy, Sandrine & Capros, Pante, 2017. "Tracking sectoral progress in the deep decarbonisation of energy systems in Europe," Energy Policy, Elsevier, vol. 110(C), pages 509-517.
    6. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Marc Vielle & Alain L. Bernard, 1998. "Un exemple d'utilisation : le coût de politiques de réduction des gaz à effet de serre," Économie et Prévision, Programme National Persée, vol. 136(5), pages 33-48.
    8. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    9. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    10. Philippe Thalmann & Marc Vielle, 2019. "Lowering CO2 emissions in the Swiss transport sector," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    11. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    12. Schmitz Gonçalves, Daniel Neves & Goes, George Vasconcelos & de Almeida D'Agosto, Márcio & Albergaria de Mello Bandeira, Renata, 2019. "Energy use and emissions scenarios for transport to gauge progress toward national commitments," Energy Policy, Elsevier, vol. 135(C).
    13. Soria-Lara, Julio A. & Banister, David, 2017. "Dynamic participation processes for policy packaging in transport backcasting studies," Transport Policy, Elsevier, vol. 58(C), pages 19-30.
    14. Fragkos, Panagiotis & Kouvaritakis, Nikos, 2018. "Model-based analysis of Intended Nationally Determined Contributions and 2 °C pathways for major economies," Energy, Elsevier, vol. 160(C), pages 965-978.
    15. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    16. Frédéric Babonneau & Ahmed Badran & Maroua Benlahrech & Alain Haurie & Maxime Schenckery & Marc Vielle, 2021. "Economic assessment of the development of CO2 direct reduction technologies in long-term climate strategies of the Gulf countries," Climatic Change, Springer, vol. 165(3), pages 1-18, April.
    17. Chepeliev, Maksym & van der Mensbrugghe, Dominique, 2017. "Global Energy Subsidies Reform: Inclusive Approaches to Welfare Assessment," Conference papers 332821, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Perdana, Sigit & Vielle, Marc, 2022. "Making the EU Carbon Border Adjustment Mechanism acceptable and climate friendly for least developed countries," Energy Policy, Elsevier, vol. 170(C).
    19. Alexander R. Barron & Allen A. Fawcett & Marc A. C. Hafstead & James R. Mcfarland & Adele C. Morris, 2018. "Policy Insights From The Emf 32 Study On U.S. Carbon Tax Scenarios," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-47, February.
    20. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2022. "Investigating low-carbon pathways for hydrocarbon-dependent rentier states: Economic transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:18:y:2018:i:1:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.