[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v6y2006i1p15-36.html
   My bibliography  Save this article

A Bayesian analysis of log-periodic precursors to financial crashes

Author

Listed:
  • George Chang
  • James Feigenbaum
Abstract
A large number of papers have been written by physicists documenting an alleged signature of imminent financial crashes involving so-called log-periodic oscillations-oscillations which are periodic with respect to the logarithm of the time to the crash. In addition to the obvious practical implications of such a signature, log-periodicity has been taken as evidence that financial markets can be modelled as complex statistical-mechanics systems. However, while many log-periodic precursors have been identified, the statistical significance of these precursors and their predictive power remain controversial in part because log-periodicity is ill-suited for study with classical methods. This paper is the first effort to apply Bayesian methods in the testing of log-periodicity. Specifically, we focus on the Johansen-Ledoit-Sornette (JLS) model of log periodicity. Using data from the S&P 500 prior to the October 1987 stock market crash, we find that, if we do not consider crash probabilities, a null hypothesis model without log-periodicity outperforms the JLS model in terms of marginal likelihood. If we do account for crash probabilities, which has not been done in the previous literature, the JLS model outperforms the null hypothesis, but only if we ignore the information obtained by standard classical methods. If the JLS model is true, then parameter estimates obtained by curve fitting have small posterior probability. Furthermore, the data set contains negligible information about the oscillation parameters, such as the frequency parameter that has received the most attention in the previous literature.

Suggested Citation

  • George Chang & James Feigenbaum, 2006. "A Bayesian analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 15-36.
  • Handle: RePEc:taf:quantf:v:6:y:2006:i:1:p:15-36
    DOI: 10.1080/14697680500511017
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500511017
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680500511017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    3. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    4. J. A. Feigenbaum, 2001. "More on a statistical analysis of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 527-532.
    5. Graf v. Bothmer, Hans-Christian & Meister, Christian, 2003. "Predicting critical crashes? A new restriction for the free variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 539-547.
    6. J.A. Feigenbaum, 2001. "A statistical analysis of log-periodic precursors to financial crashes-super-," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 346-360, March.
    7. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    8. A. Johansen & D. Sornette, 1999. "Financial ``Anti-Bubbles'': Log-Periodicity in Gold and Nikkei collapses," Papers cond-mat/9901268, arXiv.org.
    9. Anders Johansen, 2004. "Origin of Crashes in 3 US stock markets: Shocks and Bubbles," Papers cond-mat/0401210, arXiv.org.
    10. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    11. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    12. Stauffer, Dietrich & Sornette, Didier, 1998. "Log-periodic oscillations for biased diffusion on random lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 252(3), pages 271-277.
    13. A. Johansen & D. Sornette, 1999. "Financial "Anti-Bubbles": Log-Periodicity In Gold And Nikkei Collapses," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 563-575.
    14. Johansen, Anders, 2004. "Origin of crashes in three US stock markets: shocks and bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 135-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fry, J. M., 2010. "Gaussian and non-Gaussian models for financial bubbles via econophysics," MPRA Paper 27307, University Library of Munich, Germany.
    2. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    3. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    4. Papastamatiou, Konstantinos & Karakasidis, Theodoros, 2022. "Bubble detection in Greek Stock Market: A DS-LPPLS model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Fry, J. M., 2009. "Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion," MPRA Paper 16027, University Library of Munich, Germany.
    6. Kozłowska, M. & Denys, M. & Wiliński, M. & Link, G. & Gubiec, T. & Werner, T.R. & Kutner, R. & Struzik, Z.R., 2016. "Dynamic bifurcations on financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 126-142.
    7. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    8. Pawel Dlotko & Simon Rudkin, 2019. "The Topology of Time Series: Improving Recession Forecasting from Yield Spreads," Working Papers 2019-02, Swansea University, School of Management.
    9. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    10. L. Lin & Ren R. E & D. Sornette, 2009. "A Consistent Model of `Explosive' Financial Bubbles With Mean-Reversing Residuals," Papers 0905.0128, arXiv.org.
    11. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    12. Fry, J. M., 2010. "Bubbles and crashes in finance: A phase transition from random to deterministic behaviour in prices," MPRA Paper 24778, University Library of Munich, Germany.
    13. John Fry, 2014. "Bubbles, shocks and elementary technical trading strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-13, January.
    14. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    15. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    16. Fry, J. M., 2009. "Bubbles and contagion in English house prices," MPRA Paper 17687, University Library of Munich, Germany.
    17. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    18. L. Lin & Ren R.E. & D. Sornette, "undated". "A Consistent Model of `Explosive' Financial Bubbles With Mean-Reversing Residuals," Working Papers CCSS-09-002, ETH Zurich, Chair of Systems Design.
    19. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    20. Brée, David S. & Joseph, Nathan Lael, 2013. "Testing for financial crashes using the Log Periodic Power Law model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 287-297.
    21. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    22. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    2. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    3. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    4. Hans-Christian Graf v. Bothmer, 2003. "Significance of log-periodic signatures in cumulative noise," Papers cond-mat/0302507, arXiv.org, revised May 2003.
    5. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    6. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    7. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    8. Cajueiro, Daniel O. & Tabak, Benjamin M. & Werneck, Filipe K., 2009. "Can we predict crashes? The case of the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1603-1609.
    9. Zhou, Wei-Xing & Sornette, Didier, 2009. "A case study of speculative financial bubbles in the South African stock market 2003–2006," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 869-880.
    10. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    11. Wei-Xing Zhou & Didier Sornette, 2003. "Nonparametric Analyses Of Log-Periodic Precursors To Financial Crashes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1107-1125.
    12. Zhou, Wei & Huang, Yang & Chen, Jin, 2018. "The bubble and anti-bubble risk resistance analysis on the metal futures in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 947-957.
    13. Kristoffer Pons Bertelsen, 2019. "Comparing Tests for Identification of Bubbles," CREATES Research Papers 2019-16, Department of Economics and Business Economics, Aarhus University.
    14. Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
    15. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    16. Brée, David S. & Joseph, Nathan Lael, 2013. "Testing for financial crashes using the Log Periodic Power Law model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 287-297.
    17. A. Johansen & D. Sornette, 2002. "Endogenous versus Exogenous Crashes in Financial Markets," Papers cond-mat/0210509, arXiv.org.
    18. Fry, John, 2012. "Exogenous and endogenous crashes as phase transitions in complex financial systems," MPRA Paper 36202, University Library of Munich, Germany.
    19. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    20. Riccardo Rebonato & Valerio Gaspari, 2006. "Analysis of drawdowns and drawups in the US$ interest-rate market," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 297-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:6:y:2006:i:1:p:15-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.